Advertisement

MgCl2 and its applications in organic chemistry and biochemistry: a review

  • Toktam Shiebani Daloee
  • Farahnaz K. BehbahaniEmail author
Comprehensive Review
  • 15 Downloads

Abstract

MgCl2 has been reported to be a versatile reagent especially as a Lewis acid catalyst in a variety of organic transformations including the preparation of heterocyclic compounds, the protection of functional groups and condensation reaction. Also the use of MgCl2 in the preparation of metallic magnesium and the application of magnesium chloride in biochemistry such as anesthetic for cephalopods, the separation of serum high-density lipoprotein, effect of MgCl2 on rabbit bronchial smooth muscle, antimicrobial properties of magnesium chloride and effect of MgCl2 on the quality of life for patients with fibromyalgia have been reported. Therefore, in this article the use of MgCl2 in organic chemistry and biochemistry is reviewed.

Graphical abstract

MgCl2 has been reported to be a versatile reagent especially as a Lewis acid catalyst in a variety of organic transformations including the preparation of heterocyclic compounds, the protection of functional groups and condensation reaction. Also the use of MgCl2 in the preparation of metallic magnesium and the application of magnesium chloride in biochemistry such as anesthetic for cephalopods, the separation of serum high-density lipoprotein, effect of MgCl2 on rabbit bronchial smooth muscle, antimicrobial properties of magnesium chloride and effect of MgCl2 on the quality of life for patients with fibromyalgia have been reported. Therefore, in this article the use of MgCl2 in organic chemistry and biochemistry is reviewed.

Keywords

MgCl2 Synthesis Acylation Heterocyclic 

Notes

References

  1. 1.
    Holleman AF, Wiberg E (2001) Inorganic chemistry. Academic Press, San Diego, pp 1303–1316Google Scholar
  2. 2.
    Listed under ingredients for Similac hypoallergenic infant formula with iron (Abbott nutrition). abbottnutrition.com. Retrieved 2013Google Scholar
  3. 3.
    Malpass DB (2010) Commercially available metal alkyls and their use in polyolefin catalysts. In: Hoff R, Mathers RT (eds) Handbook of transition metal polymerization catalysts, chap 1Google Scholar
  4. 4.
    Kashiwa N (2004) The discovery and progress of MgCl2-supported TiCl4 catalysts. J Poly Sci Part A Poly Chem 42:1–8.  https://doi.org/10.1002/pola.10962 CrossRefGoogle Scholar
  5. 5.
    Butter E (1985) NN Greenwood, A Earnshaw: Chemistry of the elements. Pergamon Press Oxford 1984, 1542 seiten, 7 anhängePreis. Cryst Res Technol 20:662CrossRefGoogle Scholar
  6. 6.
    Eom HC, Park H, Yoon HS (2010) Preparation of anhydrous magnesium chloride from ammonium magnesium chloride hexahydrate. Adv Powder Technol 21:125–130.  https://doi.org/10.1016/j.apt.2010.01.003 CrossRefGoogle Scholar
  7. 7.
    Nakamura K, Iida T, Nakamura N, Araike T (2017) Titanium sponge production method by Kroll process at OTC. Mater Trans 58:319–321CrossRefGoogle Scholar
  8. 8.
    Komiyama T, Takaguchi Y, Tsuboi S (2004) Novel synthesis of 4-chloro-3-hydroxy-2-pyrone by the reaction of acetonide protected 4,5-dihydroxy-2-chloroglycidic ester with magnesium chloride. Tetrahedron Lett 45:6299–6301.  https://doi.org/10.1016/j.tetlet.2004.06.101 CrossRefGoogle Scholar
  9. 9.
    Coutrot P, Grison C, Tabyaoui M, Czernecki S, Valery JM (1988) Novel application of alkyl dihalogenoacetates; chain extension with an α-ketoester unit of carbohydrates. J Chem Soc Chem Commun 23:1515–1516.  https://doi.org/10.1039/c39880001515 CrossRefGoogle Scholar
  10. 10.
    Khaleghi S, Heravi MM, Khosroshahi M, Behbahani FK, Daroogheha Z (2008) A very high yielding and facile alkaline earth metals homogeneous catalysis of Biginelli reaction: an improved protocol. Green Chem Lett Rev 1:133–139.  https://doi.org/10.1080/17518250802342527 CrossRefGoogle Scholar
  11. 11.
    Khaleghi S, Heravi MM, Behbahani FK, Daroogheha Z (2006) MgCl2·6H2O: an efficient and economic catalyst for three component one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones and thiones. Org Chem Indian J 2:118–120Google Scholar
  12. 12.
    Chua PC, Nagasawa JY, Pierre F, Schwaebe MK, Vialettes A, Whitten JP (2008) A novel and efficient synthesis of 3-carboxy-4-oxo-1,8-naphthyridines using magnesium chloride. Tetrahedron Lett 49:4437–4442.  https://doi.org/10.1016/j.tetlet.2008.05.005 CrossRefGoogle Scholar
  13. 13.
    ShenT FuZ, Che F, Dang H, Lin Y, Song Q (2015) An efficient one-pot four-component synthesis of 5H-spiro [benzo [7,8] chromeno [2,3-c] pyrazole-7, 3′-indoline]-2′,5,6 (9H)-trione derivatives catalyzed by MgCl2. Tetrahedron Lett 56(9):1072–1075.  https://doi.org/10.1016/j.tetlet.2015.01.062 CrossRefGoogle Scholar
  14. 14.
    Ghosh P, Subba R (2015) MgCl2·6H2O catalyzed highly efficient synthesis of 2-substituted-1H-benzimidazoles. Tetrahedron Lett 56:2691–2694.  https://doi.org/10.1016/j.tetlet.2015.04.001 CrossRefGoogle Scholar
  15. 15.
    Fu Z, Qian K, Li S, Shen T, Song Q (2016) MgCl2 catalyzed one-pot synthesis of 2-hydroxy-3-((5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)(phenyl) methyl) naphthalene-1,4-dione derivatives in EG. Tetrahedron Lett 57:1104–1108.  https://doi.org/10.1016/j.tetlet.2016.01.089 CrossRefGoogle Scholar
  16. 16.
    Asseri SNARM, Tan SH, Mohamad WNKW, Poh SC, Chia PW, Kan S-Y, Chuah TS (2017) MgCl2 as efficient and inexpensive catalyst for the synthesis of 1,4-dihydropyridine derivatives. Malays J Anal Sci 2:13–19.  https://doi.org/10.17576/mjas-2017-2101-02 Google Scholar
  17. 17.
    Akselsen ØW, Skattebøl L, Hansen TV (2009) ortho-Formylation of oxygenated phenols. Tetrahedron Lett 50:6339–6341.  https://doi.org/10.1016/j.tetlet.2009.08.101 CrossRefGoogle Scholar
  18. 18.
    Anwar HF, Skattebøl L, Hansena TV (2007) Synthesis of substituted salicylamines and dihydro-2H-1,3-benzoxazines. Tetrahedron 63:9997–10002.  https://doi.org/10.1016/j.tet.2007.07.064 CrossRefGoogle Scholar
  19. 19.
    Pasumarthi BR (2010) An efficient synthetic protocol for the tetrahydropyranylation of alcohols and phenols catalyzed by magnesium chloride. Thesis. Department of Chemistry, Indian Institute of Technology Roorkee, RoorkeeGoogle Scholar
  20. 20.
    Patil VD, Sutar NR, PatiL KP, Gidh PV (2015) Chemoselective acylation of amines, alcohols and phenols using magnesium chloride under solvent free condition. Int J Chem Sci 13:450–458Google Scholar
  21. 21.
    Kim DY, Rhie DY, Oh DY (1996) Acylation of diethyl (ethoxycarbonyl) fluoromethylphosphonate using magnesium chloride–triethylamine: a facile synthesis of α-fluoro β-keto esters. Tetrahedron Lett 37:653–654.  https://doi.org/10.1016/0040-039(95)02224-4 CrossRefGoogle Scholar
  22. 22.
    Miura K, Nakagawa T, Hosomi A (2005) Metal chloride-promoted aldol reaction of α-dimethylsilylesters with aldehydes, ketones, and α-enones. Synlett 1917–1921.  https://doi.org/10.1055/s-2005-871938
  23. 23.
    Patel NK, Patel NV College of Pure and Applied Sciences (Industrial chemistry). Chemical Process Industries, UNIT 3BGoogle Scholar
  24. 24.
    Bolander P, Yamada A (1999) Dust palliative selection and application guide (No. 9977 1207-SDTDC). https://trid.trb.org/view/713799
  25. 25.
    Seeger M, Otto W, Flick W, Bickelhaupt F, Akkerman OS (2011) Magnesium compounds (Ullmann’s Encyclopedia of Industrial Chemistry). Wiley, Weinheim.  https://doi.org/10.1002/14356007.a15_595 Google Scholar
  26. 26.
    Hill JW, Petrucci RH (2002) General chemistry an integrated approach. Prentice Hall, Upper Saddle RiverGoogle Scholar
  27. 27.
    Mehrabi B, Abdellatif M, Masoudi F (2012) Evaluation of zefreh dolomite (central iran) for production of magnesium via the Pidgeon process. Miner Process Extr Metall Rev 33:316–326.  https://doi.org/10.1080/08827508.2011.601478 CrossRefGoogle Scholar
  28. 28.
    Baul U, Vemparala S (2015) Ion hydration and associated defects in hydrogen bond network of water: observation of reorientationally slow water molecules beyond first hydration shell in aqueous solutions of MgCl2. Phys Rev E 91:012114(1)–012114(6).  https://doi.org/10.1103/PhysRevE.91.012114 CrossRefGoogle Scholar
  29. 29.
    Messenger JB, Nixon M, Ryan KP (1985) Magnesium chloride as an anaesthetic for cephalopods. Comp Biochem Physiol C Comp Pharmacol Toxicol 82:203–205.  https://doi.org/10.1016/0742-8413(85)90230-0 CrossRefGoogle Scholar
  30. 30.
    Seigler L, Wu WT (1981) Separation of serum high-density lipoprotein for cholesterol determination: ultracentrifugation vs precipitation with sodium phosphotungstate and magnesium chloride. Clin Chem 27:838–841Google Scholar
  31. 31.
    Spivey WH, Skobeloff EM, Levin RM (1990) Effect of magnesium chloride on rabbit bronchial smooth muscle. Ann Emerg Med 19:1107–1112.  https://doi.org/10.1016/S0196-0644(05)81513-6 CrossRefGoogle Scholar
  32. 32.
    Burmester A, Luthringer B, WillumeitR Feyerabend F (2014) Comparison of the reaction of bone-derived cells to enhanced MgCl2-salt concentrations. Biomatter 4:e967616.  https://doi.org/10.4161/21592527 CrossRefGoogle Scholar
  33. 33.
    Saxena A, Sept D (2013) Multisite ion models that improve coordination and free energy calculations in molecular dynamics simulations. J Chem Theory Comput 9:3538–3542.  https://doi.org/10.1021/ct400177g CrossRefGoogle Scholar
  34. 34.
    Saxena A, García AE (2014) Multisite ion model in concentrated solutions of divalent cations (MgCl2 and CaCl2): osmotic pressure calculations. J Phys Chem B119:219–227.  https://doi.org/10.1021/jp507008x Google Scholar
  35. 35.
    Alarcón PO, Sossa K, Contreras D, Urrutia H, Nocker A (2014) Antimicrobial properties of magnesium chloride at low pH in the presence of anionic bases. Magnes Res 27:57–68.  https://doi.org/10.1684/mrh.2014.0362 Google Scholar
  36. 36.
    Kim M, Basharat A, Santosh R, Mehdi SF, Razvi Z, Yoo SK, Dankner R (2019) Reuniting overnutrition and undernutrition, macronutrients, and micronutrients. Diabetes Metab Res Rev 35:e3072.  https://doi.org/10.1002/dmrr.3072 CrossRefGoogle Scholar
  37. 37.
    Engen DJ, McAllister SJ, Whipple MO, Cha SS, Dion LJ, Vincent A, Wahner-Roedler DL (2015) Effects of transdermal magnesium chloride on quality of life for patients with fibromyalgia: a feasibility study. J Integr Med 13:306–313.  https://doi.org/10.1016/S2095-4964(15)60195-9 CrossRefGoogle Scholar
  38. 38.
    Judkins JF Jr, Hornsby JS (1978) Color removal from textile dye waste using magnesium carbonate. J Water Pollut Control Fed 50:2446–2456. https://www.jstor.org/stable/25040176
  39. 39.
    Liao MY, Randtke SJ (1986) Predicting the removal of soluble organic contaminants by lime softening. Water Res 20:27–35.  https://doi.org/10.1016/0043-1354(86)90210-1 CrossRefGoogle Scholar
  40. 40.
    Gao BY, Yue QY, Wang Y, Zhou WZ (2007) Color removal from dye-containing wastewater by magnesium chloride. J Environ Manag 82:167–172.  https://doi.org/10.1016/j.jenvman.2005.12.019 CrossRefGoogle Scholar
  41. 41.
    Tan BH, Teng TT, Omar AM (2000) Removal of dyes and industrial dye wastes by magnesium chloride. Water Res 34:597–601.  https://doi.org/10.1016/S0043-1354(99)00151-7 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Karaj BranchIslamic Azad UniversityKarajIran

Personalised recommendations