Advertisement

Facile, efficient and one-pot access to diverse new functionalized aminoalkyl and amidoalkyl naphthol scaffolds via green multicomponent reaction using triethylammonium hydrogen sulfate ([Et3NH][HSO4]) as an acidic ionic liquid under solvent-free conditions

  • Elahe Hadadianpour
  • Behjat PouramiriEmail author
Original Article
  • 15 Downloads

Abstract

An efficient, clean and one-pot multicomponent synthesis of divers kind of new functionalized aminoalkyl naphthol and amidoalkyl naphthol derivatives via tandem condensation reaction of 2-naphthol, aromatic aldehydes and 5-methyl-1,3,4-thiadiazol-2-amine/5-aryl-1,3,4-thiadiazol-2-amines urea/acetamide under solvent-free conditions is reported. Following this protocol, it was possible to synthesize novel 1-(((5-methyl-1,3,4-thiadiazol-2-yl)amino)(aryl)methyl)naphthalen-2-ol, 1-(aryl((5-aryl-1,3,4-thiadiazol-2-yl)amino)methyl)naphthalen-2-ol and amidoalkyl naphthol derivatives. This protocol includes some salient features, such as the use of triethylammonium hydrogen sulfate ([Et3NH][HSO4]) ionic liquid as a green, clean and reusable catalyst, no column chromatographic separation, high atom economy, good yields, low cost and finally no need for a complex procedure.

Graphical abstract

Keywords

1-Aminoalkyl-2-naphthol Multicomponent reaction (MCRs) Green synthesis No column chromatography Solvent-free conditions 

Notes

Acknowledgements

The authors express appreciation to the Kerman University of Medical Sciences (Grant No. 21252) and the Jiroft University of Medical Sciences Faculty Research Committee for their supports of this investigation.

Supplementary material

11030_2019_9945_MOESM1_ESM.docx (15.5 mb)
Supplementary material 1 (DOCX 15900 kb)

References

  1. 1.
    Jim KF, Matthews WD (1985) Role of extracellular calcium in contractions produced by activation of postsynaptic alpha-2 adrenoceptors in the canine saphenous vein. J Pharm Exp Ther 234:161–165Google Scholar
  2. 2.
    Atwal KS, O’Reilly BC, Ruby EP, Turk CF, Aberg G, Asaad MM, Bergey JL, Moreland S, Powell JR (1987) Substituted 1, 2, 3, 4-tetrahydroaminonaphthols: antihypertensive agents, calcium channel blockers, and adrenergic receptor blockers with catecholamine-depleting effects. J Med Chem 30:627–635CrossRefGoogle Scholar
  3. 3.
    Shen AY, Tsai CT, Chen CL (1999) Synthesis and cardiovascular evaluation of N-substituted 1-aminomethyl-2-naphthols. Eur J Med Chem 34:877–882CrossRefGoogle Scholar
  4. 4.
    Grundke M, Himmel HM, Wettwer E, Borbe HO, Ravens U (1991) Characterization of Ca (2+)-antagonistic effects of three metabolites of the new antihypertensive agent naftopidil,(naphthyl) hydroxy-naftopidil,(phenyl) hydroxy-naftopidil, and O-desmethyl-naftopidil. J Cardiovasc Pharmacol 18:918–925CrossRefGoogle Scholar
  5. 5.
    Shaterian HR, Amirzadeh A, Khorami F, Ghashang M (2008) Environmentally friendly preparation of amidoalkyl naphthols. Synth Commun 38:2983–2994CrossRefGoogle Scholar
  6. 6.
    Almajan GL, Barbuceanu SF, Bancescu G, Saramet I, Saramet G, Draghici C (2010) Synthesis and antimicrobial evaluation of some fused heterocyclic [1, 2, 4] triazolo [3, 4-b][1, 3, 4] thiadiazole derivatives. Eur J Med Chem 45:6139–6146CrossRefGoogle Scholar
  7. 7.
    Swamy SN, Priya BS, Prabhuswamy B, Doreswamy BH, Prasad JS, Rangappa KS (2006) Synthesis of pharmaceutically important condensed heterocyclic 4, 6-disubstituted-1, 2, 4-triazolo-1, 3, 4-thiadiazole derivatives as antimicrobials. Eur J Med Chem 41:531–538CrossRefGoogle Scholar
  8. 8.
    Kolavi G, Hegde V, Ahmed Khazi I, Gadad P (2006) Synthesis and evaluation of antitubercular activity of imidazo [2, 1-b][1, 3, 4] thiadiazole derivatives. Bioorg Med Chem 14:3069–3080CrossRefGoogle Scholar
  9. 9.
    Khan I, Ali S, Hameed S, Rama NH, Hussain MT, Wadood A, Uddin R, Ul-Haq Z, Khan A, Ali S, Choudhary MI (2010) Synthesis, antioxidant activities and urease inhibition of some new 1, 2, 4-triazole and 1, 3, 4-thiadiazole derivatives. Eur J Med Chem 45:5200–5207CrossRefGoogle Scholar
  10. 10.
    Hafez HN, Hegab MI, Ahmed-Farag IS, El-Gazzar AB (2008) A facile regioselective synthesis of novel spiro-thioxanthene and spiro-xanthene-9′, 2-[1, 3, 4] thiadiazole derivatives as potential analgesic and anti-inflammatory agents. Bioorg Med Chem Lett 18:4538–4543CrossRefGoogle Scholar
  11. 11.
    Schenone S, Brullo C, Bruno O, Bondavalli F, Ranise A, Filippelli W, Rinaldi B, Capuano A, Falcone G (2006) New 1, 3, 4-thiadiazole derivatives endowed with analgesic and anti-inflammatory activities. Bioorg Med Chem 14:1698–1705CrossRefGoogle Scholar
  12. 12.
    Jatav V, Mishra P, Kashaw S, Stables JP (2008) CNS depressant and anticonvulsant activities of some novel 3-[5-substituted 1, 3, 4-thiadiazole-2-yl]-2-styryl quinazoline-4 (3H)-ones. Eur J Med Chem 43:1945–1954CrossRefGoogle Scholar
  13. 13.
    Clerici F, Pocar D, Guido M, Loche A, Perlini V, Brufani M (2001) Synthesis of 2-amino-5-sulfanyl-1, 3, 4-thiadiazole derivatives and evaluation of their antidepressant and anxiolytic activity. J Med Chem 44:931–936CrossRefGoogle Scholar
  14. 14.
    Hasui T, Matsunaga N, Ora T, Ohyabu N, Nishigaki N, Imura Y, Igata Y, Matsui H, Motoyaji T, Tanaka T, Habuka N (2011) Identification of benzoxazin-3-one derivatives as novel, potent, and selective nonsteroidal mineralocorticoid receptor antagonists. J Med Chem 54:8616–8631CrossRefGoogle Scholar
  15. 15.
    Rzeski W, Matysiak J, Kandefer-Szerszeń M (2007) Anticancer, neuroprotective activities and computational studies of 2-amino-1, 3, 4-thiadiazole based compound. Bioorg Med Chem 15:3201–3207CrossRefGoogle Scholar
  16. 16.
    Noolvi MN, Patel HM, Singh N, Gadad AK, Cameotra SS (2011) Badiger A (2011) Synthesis and anticancer evaluation of novel 2-cyclopropylimidazo [2, 1-b][1, 3, 4]-thiadiazole derivatives. Eur J Med Chem 46:4411–4418CrossRefGoogle Scholar
  17. 17.
    Chen CJ, Song BA, Yang S, Xu GF, Bhadury PS, Jin LH, Hu DY, Li QZ, Liu F, Xue W, Lu P (2007) Synthesis and antifungal activities of 5-(3, 4, 5-trimethoxyphenyl)-2-sulfonyl-1,3,4-thiadiazole and 5-(3, 4, 5-trimethoxyphenyl)-2-sulfonyl-1, 3, 4-oxadiazole derivatives. Bioorg Med Chem 15:3981–3989CrossRefGoogle Scholar
  18. 18.
    Liu XH, Shi YX, Ma Y, Zhang CY, Dong WL, Pan L, Wang BL, Li BJ, Li ZM (2009) Synthesis, antifungal activities and 3D-QSAR study of N-(5-substituted-1, 3, 4-thiadiazol-2-yl) cyclopropanecarboxamides. Eur J Med Chem 44:2782–2786CrossRefGoogle Scholar
  19. 19.
    Foroumadi A, Asadipour A, Mirzaei M, Karimi J, Emami S, Antituberculosis agents. V (2002) Synthesis, evaluation of in vitro antituberculosis activity and cytotoxicity of some 2-(5-nitro-2-furyl)-1, 3, 4-thiadiazole derivatives. Il Farmaco 57:765–769CrossRefGoogle Scholar
  20. 20.
    Kolavi G, Hegde V, Ahmed Khazi I, Gadad P (2006) Synthesis and evaluation of antitubercular activity of imidazo [2, 1-b][1, 3, 4] thiadiazole derivatives. Bioorg Med Chem 14:3069–3080CrossRefGoogle Scholar
  21. 21.
    Ibrahim DA (2009) Synthesis and biological evaluation of 3, 6-disubstituted [1, 2, 4] triazolo [3, 4-b][1, 3, 4] thiadiazole derivatives as a novel class of potential anti-tumor agents. Eur J Med Chem 44:2776–2781CrossRefGoogle Scholar
  22. 22.
    Foroumadi A, Mansouri S, Kiani Z, Rahmani A (2003) Synthesis and in vitro antibacterial evaluation of N-[5-(5-nitro-2-thienyl)-1, 3, 4-thiadiazole-2-yl] piperazinyl quinolones. Eur J Med Chem 38:851–854CrossRefGoogle Scholar
  23. 23.
    Jatav V, Mishra P, Kashaw S, Stables JP (2008) Synthesis and CNS depressant activity of some novel 3-[5-substituted 1, 3, 4-thiadiazole-2-yl]-2-styryl quinazoline-4 (3H)-ones. Eur J Med Chem 43:135–141CrossRefGoogle Scholar
  24. 24.
    Guo WC, Liu XH, Li YH, Wang SH, Li ZM (2008) Synthesis and herbicidal activity of novel sulfonylureas containing thiadiazol moiety. Chem Res Chin Univ 24:32–35CrossRefGoogle Scholar
  25. 25.
    Kritsanida M, Mouroutsou A, Marakos P, Pouli N, Papakonstantinou-Garoufalias S, Pannecouque C, Witvrouw M, De Clercq E (2002) Synthesis and antiviral activity evaluation of some new 6-substituted 3-(1-adamantyl)-1, 2, 4-triazolo [3, 4-b][1, 3, 4] thiadiazoles. Il Farmaco 57:253–257CrossRefGoogle Scholar
  26. 26.
    Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, Harousseau JL, Ben-Yehuda D, Lonial S, Goldschmidt H, Reece D (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352:2487–2498CrossRefGoogle Scholar
  27. 27.
    Kumar KA, Jayaroopa P, Kumar GV (2012) Comprehensive review on the chemistry of 1, 3, 4-oxadiazoles and their applications. Int J Chem Technol Res 4(4):1782–1791Google Scholar
  28. 28.
    Daştan A, Kulkarni A, Toeroek B (2012) Environmentally benign synthesis of heterocyclic compounds by combined microwave-assisted heterogeneous catalytic approaches. Green Chem 14:17–37CrossRefGoogle Scholar
  29. 29.
    Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312CrossRefGoogle Scholar
  30. 30.
    Leitner W (2009) Green solvents—progress in science and application. Green Chem 11:603–1603CrossRefGoogle Scholar
  31. 31.
    Kumar A, Maurya RA (2007) Synthesis of polyhydroquinoline derivatives through unsymmetric Hantzsch reaction using organocatalysts. Tetrahedron 63:1946–1952CrossRefGoogle Scholar
  32. 32.
    Earle MJ, Katdare SP, Seddon KR (2004) Paradigm confirmed: the first use of ionic liquids to dramatically influence the outcome of chemical reactions. Org Lett 6:707–710CrossRefGoogle Scholar
  33. 33.
    Earle MJ, McCormac PB, Seddon KR (1999) The first high yield green route to a pharmaceutical in a room temperature ionic liquid. Green Chem 1:23–25CrossRefGoogle Scholar
  34. 34.
    Chauvin Y, Mussmann L, Olivier HA (1996) novel class of versatile solvents for two-phase catalysis: hydrogenation, isomerization, and hydroformylation of alkenes catalyzed by rhodium complexes in liquid 1, 3-dialkylimidazolium salts. Angew Chem Int Ed Engl 34:2698–2700CrossRefGoogle Scholar
  35. 35.
    Klingshirn MA, Rogers RD, Shaughnessy KH (2005) Palladium-catalyzed hydroesterification of styrene derivatives in the presence of ionic liquids. J Org Chem 690:3620–3626CrossRefGoogle Scholar
  36. 36.
    Yadav JS, Reddy BV, Baishya G, Reddy KV, Narsaiah AV (2005) Conjugate addition of indoles to α, β-unsaturated ketones using Cu (OTf) 2 immobilized in ionic liquids. Tetrahedron 61:9541–9544CrossRefGoogle Scholar
  37. 37.
    Picquet M, Stutzmann S, Tkatchenko I, Tommasi I, Zimmermann J, Wasserscheid P (2003) Selective palladium-catalysed dimerisation of methyl acrylate in ionic liquids: towards a continuous process. Green Chem 5:153–162CrossRefGoogle Scholar
  38. 38.
    Mathews CJ, Smith PJ, Welton T (2000) Palladium catalysed Suzuki cross-coupling reactions in ambient temperature ionic liquids. Chem Commun 14:1249–1250CrossRefGoogle Scholar
  39. 39.
    Xu L, Chen W, Xiao J (2000) Heck reaction in ionic liquids and the in situ identification of N-heterocyclic carbene complexes of palladium. Organometallics 19:1123–1127CrossRefGoogle Scholar
  40. 40.
    Peng J, Deng Y (2001) Catalytic Beckmann rearrangement of ketoximes in ionic liquids. Tetrahedron Lett 42:403–405CrossRefGoogle Scholar
  41. 41.
    Herrmann WA, Böhm VP (1999) Heck reaction catalyzed by phospha-palladacycles in non-aqueous ionic liquids. J Organomet Chem 572:141–145CrossRefGoogle Scholar
  42. 42.
    Lee CW (1999) Diels-Alder reactions in chloroaluminate ionic liquids: acceleration and selectivity enhancement. Tetrahedron Lett 40:2461–2464CrossRefGoogle Scholar
  43. 43.
    Bienaymé H, Hulme C, Oddon G, Schmitt P (2000) Maximizing synthetic efficiency: multi-component transformations lead the way. Chem Eur J 6:3321–3329CrossRefGoogle Scholar
  44. 44.
    Thompson LA (2000) Recent applications of polymer-supported reagents and scavengers in combinatorial, parallel, or multistep synthesis. Curr Opin Chem Biol 4:324–337CrossRefGoogle Scholar
  45. 45.
    Dömling A (2002) Recent advances in isocyanide-based multicomponent chemistry. Curr Opin Chem Biol 6:306–313CrossRefGoogle Scholar
  46. 46.
    Pouramiri B, Moghimi S, Mahdavi M, Nadri H, Moradi A, Tavakolinejad-Kermani E, Firoozpour L, Asadipour A, Foroumadi A (2017) Synthesis and anticholinesterase activity of new substituted benzo [d] oxazole-based derivatives. Chem Biol Drug Des 89:783–789CrossRefGoogle Scholar
  47. 47.
    Pouramiri B, Mahdavi M, Moghimi S, Firoozpour L, Nadri H, Moradi A, Tavakolinejad-Kermani E, Asadipour A, Foroumadi A (2016) Synthesis and antiacetylcholinesterase activity evaluation of new 2-aryl benzofuran derivatives. Lett Drug Des Discov 13:897–902CrossRefGoogle Scholar
  48. 48.
    Pouramiri B, Kermani ET (2016) One-pot, four-component synthesis of new 3, 4, 7, 8-tetrahydro-3, 3-dimethyl-11-aryl-2H-pyridazino [1, 2-a] indazole-1, 6, 9 (11H)-triones and 2H-indazolo [2, 1-b] phthalazine-1, 6, 11 (13H)-triones using an acidic ionic liquid N,N-diethyl-N-sulfoethanammonium chloride ([Et3N–SO3H] Cl) as a highly efficient and recyclable catalyst. Tetrahedron Lett 57:1006–1010CrossRefGoogle Scholar
  49. 49.
    Pouramiri B, Kermani ET (2016) Solvent-free, four-component synthesis of 3, 4, 7, 8-tetrahydro-3, 3-dimethyl-11-aryl-2H-pyridazino [1, 2-a] indazole-1, 6, 9 (11H)-triones; using 1-butyl-3-methylimidazolium hydroxide ([bmim] OH) as a green and reusable catalyst. J Iran Chem Soci 13:1011–1017CrossRefGoogle Scholar
  50. 50.
    Patil SB, Singh PR, Surpur MP, Samant SD (2007) Ultrasound-promoted synthesis of 1-amidoalkyl-2-naphthols via a three-component condensation of 2-naphthol, ureas/amides, and aldehydes, catalyzed by sulfamic acid under ambient conditions. Ultrason Sonochem 14:515–518CrossRefGoogle Scholar
  51. 51.
    Ghorbani-Vaghei R, Malaekehpour SM (2010) Efficient and solvent-free synthesis of 1-amidoalkyl-2-naphthols using N, N, N′, N′-tetrabromobenzene-1, 3-disulfonamide. Cent Eur J Chem 8:1086–1089Google Scholar
  52. 52.
    Shaterian HR, Yarahmadi H (2008) A modified reaction for the preparation of amidoalkyl naphthols. Tetrahedron Lett 49:1297–1300CrossRefGoogle Scholar
  53. 53.
    Hajipour AR, Ghayeb Y, Sheikhan N, Ruoho AE (2009) Brønsted acidic ionic liquid as an efficient and reusable catalyst for one-pot synthesis of 1-amidoalkyl 2-naphthols under solvent-free conditions. Tetrahedron Lett 50:5649–5651CrossRefGoogle Scholar
  54. 54.
    Selvam NP, Perumal PT (2006) A new synthesis of acetamido phenols promoted by Ce (SO4)2. Tetrahedron Lett 47:7481–7483CrossRefGoogle Scholar
  55. 55.
    Kantevari S, Vuppalapati SV, Nagarapu L (2007) Montmorillonite K10 catalyzed efficient synthesis of amidoalkyl naphthols under solvent free conditions. Catal Commun 8:1857–1862CrossRefGoogle Scholar
  56. 56.
    Wang C, Guo L, Li H, Wang Y, Weng J, Wu L (2006) Preparation of simple ammonium ionic liquids and their application in the cracking of dialkoxypropanes. Green Chem 8:603–607CrossRefGoogle Scholar
  57. 57.
    Jatav V, Jain SK, Kashaw SK, Mishra P (2006) Synthesis and antimicrobial activity of novel 2-methyl-3-(1′3′4′-thiadiazoyl)-4-(3h) quinazolinones. Indian J Pharm Sci 68:360–363CrossRefGoogle Scholar
  58. 58.
    Chitre TS, Panda S, Patil SM, Chothe AS, Vignesh G, Kathiravan MK (2011) Novel 1, 3, 4-(thiadiazol-2-ylamino) methyl-5-(pyridin-4-yl)-1, 3, 4-oxadiazol-2-thiones: synthesis, docking and antimycobacterial testing. Adv Biol Chem 1:7–14CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of PharmacyKerman University of Medical ScienceKermanIran
  2. 2.Faculty of MedicineJiroft University of Medical SciencesJiroftIran

Personalised recommendations