Advertisement

Thermal electron-transfer-induced oxidation of 2-pyrazolines

  • Hamid Reza MemarianEmail author
  • Reza Minakar
Original Article
  • 12 Downloads

Abstract

Various 3,5-diaryl-1-phenyl-2-pyrazolines were synthesized, and their thermal oxidation to their corresponding 2-pyrazoles was investigated using tetrabutylammonium peroxydisulfate in acetonitrile solution. Compared to the reported oxidative methods, this oxidizing agent provides a clean and non-expensive oxidative reaction in a short reaction time. Based on the proposed reaction mechanism, the extent of co-planarity of the C3-aryl ring toward C3=N2 double bond of the heterocyclic ring affects the electron-donating ability of the heterocyclic ring and decreases the time of oxidative reaction. The experimental results are supported by cyclic voltammetric measurements.

Graphical abstract

Keywords

Electron transfer Oxidation Peroxydisulfates 2-Pyrazolines Substituent effects 

Notes

Acknowledgements

We are thankful to the Research Council and Office of Graduate Studies of the University of Isfahan for their financial support.

Supplementary material

11030_2019_9922_MOESM1_ESM.docx (30.1 mb)
Supplementary material 1 (DOCX 30871 kb)

References

  1. 1.
    Ali MA, Shaharyar M, Siddiqui AA (2007) Synthesis, structural activity relationship and anti-tubercular activity of novel pyrazoline derivatives. Eur J Med Chem 42:268–275.  https://doi.org/10.1016/j.ejmech.2006.08.004 CrossRefGoogle Scholar
  2. 2.
    Ozdemir Z, Kandilci HB, Gumusel B, Calıs U, Bilgin AA (2007) Synthesis and studies on antidepressant and anticonvulsant activities of some 3-(2-furyl)-pyrazoline derivatives. Eur J Med Chem 42:373–379.  https://doi.org/10.1016/j.ejmech.2006.09.006 CrossRefGoogle Scholar
  3. 3.
    Jainey PJ, Bhat IK (2012) Antitumor, analgesic, and anti-inflammatory activities of synthesized pyrazolines. Pharm Chem 4:82–87.  https://doi.org/10.4103/0975-1483.96621 Google Scholar
  4. 4.
    Ramesh B, Sumana T (2010) Synthesis and anti-inflammatory activity of pyrazolines. Chem Eur J 7:514–516.  https://doi.org/10.1155/2010/731675 Google Scholar
  5. 5.
    Karabacak M, Altıntop MD, Çiftçi Hİ, Koga R, Otsuka M, Fujita M, Özdemir A (2015) Synthesis and evaluation of new pyrazoline derivatives as potential anticancer agents. Molecules 20:19066–19084.  https://doi.org/10.3390/molecules201019066 CrossRefGoogle Scholar
  6. 6.
    Kumar V, Sareen V, Khatri V, Sareen S (2016) Recent applications of pyrazole and its substituted analogs. Int J Appl Res 2:461–469. ISSN Online: 2394-5869Google Scholar
  7. 7.
    Dai H, Li Y-Q, Du D, Qin X, Zhang X, Yu H-B, Fang J-X (2008) Synthesis and biological activities of novel pyrazole oxime derivatives containing a 2chloro-5-thiazolyl moiety. J Agric Food Chem 56:10805–10810.  https://doi.org/10.1021/jf802429x CrossRefGoogle Scholar
  8. 8.
    Keter FK, Darkwa J (2012) Perspective: the potential of pyrazole-based compounds in medicine. Biometals 25:9–21.  https://doi.org/10.1007/s10534-011-9496-4 CrossRefGoogle Scholar
  9. 9.
    Ouyang G, Cai X-J, Chen Z, Song BA, Bhadury PS, Yang S, Jin LH, Xue W, Hu D-Y, Zeng S (2008) Synthesis and antiviral activities of pyrazole derivatives containing an oxime moiety. J Agric Food Chem 56:10160–10167.  https://doi.org/10.1021/jf802489e CrossRefGoogle Scholar
  10. 10.
    Abrigach F, Touzani R (2016) Pyrazole derivatives with NCN junction and their biological activity: a review. Med Chem 6:292–298.  https://doi.org/10.4172/medicinal-chemistry.1000359 CrossRefGoogle Scholar
  11. 11.
    Evai LA, Patonay T, Silva AMS, Pinto DCGA, Cavaleiro JAS (2002) Synthesis of 3-aryl-5-styryl-2-pyrazolines by the reaction of (E, E) cinnamylideneacetophenones with hydrazines and their oxidation into pyrazoles. J Heterocycl Chem 39:751–758.  https://doi.org/10.1002/jhet.5570390421 CrossRefGoogle Scholar
  12. 12.
    Levai A, Silva Artur MS, PintoDiana CGA, Cavaleiro Jose AS, Alkorta I, Elguero J, Jekö J (2004) Synthesis of pyrazolyl-2-pyrazolines by treatment of 3-(3aryl-3-oxopropenyl)chromen-4-ones with hydrazine and their oxidation to bis(pyrazoles). Eur J Org Chem 2004:4672–4679.  https://doi.org/10.1002/ejoc.200400465 CrossRefGoogle Scholar
  13. 13.
    Sabitha G, Reddy GSKK, Reddy CS, Fatima N, Yadav JS (2003) Zr(NO3)4: a versatile oxidizing agent for aromatization of Hantzsch 1,4-dihydropyridines and 1,3,5-trisubstituted pyrazolines. Synthesis 8:1267–1271.  https://doi.org/10.1055/s-2003-39410 Google Scholar
  14. 14.
    Azarifar D, Zolfigol MA, Maleki B (2004) Silica-supported 1,3-dibromo-5,5dimethylhydantoin (DBH) as a useful reagent for microwave-assisted aromatization of 1,3,5-trisubstituted pyrazolines under solvent-free conditions. Synthesis 11:1744–1746.  https://doi.org/10.5012/bkcs.2004.25.1.023 CrossRefGoogle Scholar
  15. 15.
    Han B, Liu Z, Liu Q, Yang L, Liu Z-L, Yu W (2006) An efficient aerobic oxidative aromatization of Hantzsch 1,4-dihydropyridines and 1,3,5-trisubstituted pyrazolines. Tetrahedron 62:2492–2496.  https://doi.org/10.1016/j.tet.2005.12.056 CrossRefGoogle Scholar
  16. 16.
    Zolfigol MA, Azarifar D, Maleki B (2004) Trichloroisocyanuric acid as a novel oxidizing agent for the oxidation of 1,3,5-trisubstituted pyrazolines under both heterogeneous and solvent free conditions. Tetrahedron Lett 45:2181–2183.  https://doi.org/10.1016/j.tetlet.2004.01.038 CrossRefGoogle Scholar
  17. 17.
    Chai L, Zhao Y, Sheng Q, Liu Z-Q (2006) Aromatization of Hantzsch 1,4-dihydropyridines and 1,3,5-trisubstituted pyrazolines with HIO3 and I2O5 in water. Tetrahedron Lett 47:9283–9285.  https://doi.org/10.1016/j.tetlet.2006.10.108 CrossRefGoogle Scholar
  18. 18.
    Nakamichi N, Kawashita Y, Hayashi M (2002) Oxidative aromatization of 1,3,5-trisubstituted pyrazolines and Hantzsch 1,4-dihydropyridines by Pd/C in acetic acid. Org Lett 4:3955–3957.  https://doi.org/10.1021/ol0268135 CrossRefGoogle Scholar
  19. 19.
    Aggarwal R, Kumar V, Singh SP (2007) Synthesis of some new 1-(6-fluorobenzothiazol-2-yl)-3-(4-fluorophenyl)-5-arylpyrazolines and their iodine(III) mediated oxidation to corresponding pyrazoles. Indian J Chem 46B:1332–1336.  https://doi.org/10.1002/chin.200750139 Google Scholar
  20. 20.
    Huang YR, Katzenellenbogen JA (2000) Regioselective synthesis of 1,3,5-triaryl-4-alkylpyrazoles: novel ligands for the estrogen receptor. Org Lett 2:2833–2836.  https://doi.org/10.1021/ol0062650 CrossRefGoogle Scholar
  21. 21.
    Ananthnag GS, Adhikari A, Balakrishna MS (2014) Iron-catalyzed aerobic oxidative aromatization of 1,3,5-trisubstituted pyrazolines. Catal Commun 43:240–243.  https://doi.org/10.1016/j.catcom.2013.09.002 CrossRefGoogle Scholar
  22. 22.
    Kumar A, Maurya RA, Sharma S (2009) Oxidative aromatization of 1,4-dihydropyridines and pyrazolines using HbA–H2O2: an efficient biomimetic catalyst system providing metabolites of drug candidates. Bioorg Med Chem Lett 19:4432–4436.  https://doi.org/10.1016/j.bmcl.2009.05.056 CrossRefGoogle Scholar
  23. 23.
    Pérez-Aguilar MC, Valdés C (2015) Synthesis of chiral pyrazoles: a 1,3-dipolar cycloaddition/[1,5]sigmatropic rearrangement with stereoretentive migration of a stereogenic group. Angew Chem Int Ed 54:13729–13733.  https://doi.org/10.1002/anie.201506881 CrossRefGoogle Scholar
  24. 24.
    Zhang Q, Meng L-G, Wang K, Wang L (2015) nBu3P-catalyzed desulfonylative [3 + 2] cycloadditions of allylic carbonates with arylazosulfones to pyrazole derivatives. Org Lett 17:872–875.  https://doi.org/10.1021/ol503735c CrossRefGoogle Scholar
  25. 25.
    Zheng Y, Zhang X, Yao R, Wen YC, Huang J, Xu X (2016) 1,3-Dipolar cycloaddition of alkyne-tethered N-tosylhydrazones: synthesis of fused polycyclic pyrazoles. J Org Chem 81:11072–11080.  https://doi.org/10.1021/acs.joc.6b02076 CrossRefGoogle Scholar
  26. 26.
    O’Connor MJ, Sun C, Guan X, Sabbasani VR, Lee D (2016) Sequential 1,4-/1,2-addition of lithium(trimethylsilyl)diazomethane onto cyclic enones to induce C–C fragmentation and N–Li insertion. Angew Chem Int Ed 55:2222–2225.  https://doi.org/10.1002/anie.201510152 CrossRefGoogle Scholar
  27. 27.
    Chen F-E, Li Y-Y, Xu M, Jia H-Q (2002) Tetrabutylammonium peroxydisulfate in organic synthesis; XIII. A simple and highly efficient one-pot synthesis of nitriles by nickel-catalyzed oxidation of primary alcohols with tetrabutylammonium peroxydisulfate. Synthesis 13:1804–1806.  https://doi.org/10.1055/s-2002-33906 Google Scholar
  28. 28.
    Chen F-E, Peng Z-Z, Fu H, Liu J-D, Shao L-Y (1999) Tetrabutylammonium peroxydisulfate in organic synthesis. Part 8. An efficient and convenient nickel catalyzed oxidation of primary amines to nitriles with tetrabutylammonium peroxydisulfate. J Chem Res (S) 12:726–727.  https://doi.org/10.1039/A906485K CrossRefGoogle Scholar
  29. 29.
    Choi HC, Cho KI, Kim YH (1995) Novel direct tetrahydropyranylation of alcohols with tetrahydropyran and tetra-n-butylammonium peroxydisulfate. Synlett 2:207–208.  https://doi.org/10.1055/s-1995-4890 CrossRefGoogle Scholar
  30. 30.
    Jung JC, Kim YH, Lee K (2011) Practical β-masked formylation and acetylation of electron-deficient olefins utilizing tetra(n-butyl)ammonium peroxydisulfate. Tetrahedron Lett 52:4662–4664.  https://doi.org/10.1016/j.tetlet.2011.06.116 CrossRefGoogle Scholar
  31. 31.
    Yang SG, Park MY, Kim YH (2002) Facile and chemo-selective cleavages of allyl ethers utilizing tetrabutylammonium sulfate radical species. Synlett 3:492–494.  https://doi.org/10.1055/s-2002-20475 CrossRefGoogle Scholar
  32. 32.
    Chen F-E, Liu J-D, Fu H, Peng Z-Z, Shao L-Y (2000) Tetrabutylammonium peroxydisulfate in organic synthesis; VII. A facile and efficient method for the regeneration of carbonyl compounds from semicarbazones by tetrabutylammonium peroxydisulfate. Synth Commun 30:2295–2299.  https://doi.org/10.1080/00397919908086071 CrossRefGoogle Scholar
  33. 33.
    Yang SG, Hwang JP, Park MY, Lee K, Kim YH (2007) Highly efficient epoxidation of electron-deficient olefins with tetrabutylammonium peroxydisulfate. Tetrahedron 63:5184–5188.  https://doi.org/10.1016/j.tet.2007.03.167 CrossRefGoogle Scholar
  34. 34.
    Whang PJ, Gak Yang S, Hae Kim Y (1997) Novel α-iodination of functionalized ketones with iodine mediated by bis(tetra-n-butylammonium) peroxydisulfate. Chem Commun 15:1355–1356.  https://doi.org/10.1039/A702524F CrossRefGoogle Scholar
  35. 35.
    Park MY, Yang SG, Jadhav V, Kim YH (2004) Practical and regioselective brominations of aromatic compounds using tetrabutylammonium peroxydisulfate. Tedrahedron Lett 45:4887–4890.  https://doi.org/10.1016/j.tetlet.2004.04.112 CrossRefGoogle Scholar
  36. 36.
    Yang SG, Kim YH (1999) A practical iodination of aromatic compounds using tetrabutylammonium peroxydisulfate and iodine. Tetrahedron Lett 40:6051–6054.  https://doi.org/10.1016/S0040-4039(99)01236-8 CrossRefGoogle Scholar
  37. 37.
    Chen F-E, Lu Y-W, He Y-P, Luo Y-F, Yan M-G (2002) Tetrabutylammonium peroxydisulfate in organic synthesis. XII. A convenient and practical procedure for the selective oxidation of thiols to disulfides with tetrabutylammonium peroxydisulfate under solvent-free conditions. Synth Commun 32:3487–3492.  https://doi.org/10.1081/SCC-120014782 CrossRefGoogle Scholar
  38. 38.
    Memarian HR, Soleymani M (2011) Ultrasound assisted dehydrogenation of 2-oxo-1,2,3,4-tetrahydrpyrimidine-5-carboxamides. Ultrason Sonochem 18:745–752.  https://doi.org/10.1016/j.ultsonch.2010.10.006 CrossRefGoogle Scholar
  39. 39.
    Park HS, Lee HY, Kim YH (2005) Facile Barton–McCombie deoxygenation of alcohols with tetrabutylammonium peroxydisulfate and formate ion. Org Lett 7:3187–3190.  https://doi.org/10.1021/ol050886h CrossRefGoogle Scholar
  40. 40.
    Memarian HR, Ghahremani S (2017) Electron transfer-induced oxidation of 2,3-dihydroquinazolin-4(1H)-ones. Z Naturforsch 72b:403–408.  https://doi.org/10.1515/znb-2016-0260 CrossRefGoogle Scholar
  41. 41.
    Memarian HR, Kalantari M (2017) Steric and electronic substitution effects on the thermal oxidation of 5-carboethoxy-2-oxo-1,2,3,4-tetrahydropyridines. J Iran Chem Soc 14:143–155 and references cited therein.  https://doi.org/10.1007/s13738-016-0966-z
  42. 42.
    Memarian HR, Sanchooli E (2017) Photo-dehydrogenation of 4,6-diaryl-2-oxo-1,2,3,4-tetrahydropyrimidines. J Iran Chem Soc 14:1335–1346 and references cited therein.  https://doi.org/10.1007/s13738-017-1084-2
  43. 43.
    Soltani M, Memarian HR, Sabzyan H (2018) Spectroscopic studies of aryl substituted 1-phenyl-2-pyrazolines: steric and electronic substitution effects. J Mol Struct 1173:903–917.  https://doi.org/10.1016/j.molstruc.2018.07.052 CrossRefGoogle Scholar
  44. 44.
    Zhenglin Y, Shikang W (1993) A study on the photoinduced charge transfer process of triaryl-2-pyrazoline compounds. J Lumin 54:303–308.  https://doi.org/10.1016/0022-2313(93)90089-6 CrossRefGoogle Scholar
  45. 45.
    Bozkurt E, Gul HI, Mete E (2018) Solvent and substituent effect on the photophysical properties of pyrazoline derivatives: a spectroscopic study. J Photochem Photobiol A Chem 352:35–42.  https://doi.org/10.1016/j.jphotochem.2017.10.010 CrossRefGoogle Scholar
  46. 46.
    Fahrni CJ, Yang L, VanDerveer DG (2003) Tuning the photoinduced electron-transfer thermodynamics in 1,3,5-triaryl-2-pyrazoline fluorophore: X-ray structures, photophysical characterization, computational analysis, and in vivo evaluation. J Am Chem Soc 125:3799–3812.  https://doi.org/10.1021/ja028266o CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of IsfahanIsfahanIslamic Republic of Iran

Personalised recommendations