Advertisement

The molecular diversity scope of 4-hydroxycoumarin in the synthesis of heterocyclic compounds via multicomponent reactions

  • Ghodsi Mohammadi ZiaraniEmail author
  • Razieh MoradiEmail author
  • Tahereh Ahmadi
  • Parisa Gholamzadeh
Comprehensive Review
  • 30 Downloads

Abstract

4-Hydroxycoumarins are some of the most versatile heterocyclic scaffolds and are frequently applied in the synthesis of various organic compounds. 4-Hydroxycoumarin-based compounds are important among heterocyclic structures due to their biological and pharmaceutical activities. In this study, we provide an overview on the recent applications of 4-hydroxycoumarin in multicomponent reactions for the synthesis of various heterocyclic compounds during the time period of 2015–2018.

Graphical abstract

Keywords

4-Hydroxycoumarin Multicomponent reaction Heterocycles Synthesis 

Abbreviations

CAN

Ceric ammonium nitrate

CECILs

Crown ether complex cation ionic liquids

DABCO

1,4-Diazabicyclo[2.2.2]octane

DBU

1,8-Diazabicyclo[5.4.0]undec-7-ene

DCE

Dichloroethane

DMAP

N,N-Dimethyl-4-aminopyridine

EDTA-4Na

Sodium ethylene diamine tetraacetate

GO NSs

Graphene oxide nanostructures

LTNPs

L-Tyrosine-loaded nanoparticles

MAP

Monoammonium phosphate

MSA

Molybdate sulfuric acid

MW

Microwave

NCS

N-Chlorosuccinimide

NMS

Nanostructured molten salt

NPs

Nanoparticles

OBS

o-Benzenedisulfonimide

PPI

Potassium phthalimide

PSA

Phosphosulfonic acid

PS-PTSA

Polystyrene-supported p-toluenesulfonic acid

p-TSA

p-Toluenesulfonic acid

SA

5-Sulfosalicylic acid

SSA-MNPs

Silica sulfuric acid magnetic nanoparticles

THAM

Tris-hydroxymethylaminomethane

Notes

Acknowledgements

We are grateful for financial support from the Research Council of Alzahra University.

References

  1. 1.
    Siddiqui ZN (2014) Sulfamic acid catalysed synthesis of pyranocoumarins in aqueous media. Tetrahedron Lett 55:163–168CrossRefGoogle Scholar
  2. 2.
    Mohammadi Ziarani G, Hajiabbasi P (2013) Recent application of 4-hydroxycoumarin in multi-component reactions. Heterocycles 87:1415–1439CrossRefGoogle Scholar
  3. 3.
    Awe S, Mikolasch A, Schauer F (2009) Formation of coumarines during the degradation of alkyl substituted aromatic oil components by the yeast Trichosporon asahii. Appl Microbiol Biotechnol 84:965–976CrossRefPubMedGoogle Scholar
  4. 4.
    Oganesyan E, Nersesyan Z, Parkhomenko AY (2007) Chemical composition of the above-ground part of Coriandrum sativum. Pharm Chem J 41:149–153CrossRefGoogle Scholar
  5. 5.
    Abdelhafez OM, Amin KM, Batran RZ, Maher TJ, Nada SA, Sethumadhavan S (2010) Synthesis, anticoagulant and PIVKA-II induced by new 4-hydroxycoumarin derivatives. Bioorg Med Chem 18:3371–3378CrossRefPubMedGoogle Scholar
  6. 6.
    Au N, Rettie AE (2008) Pharmacogenomics of 4-hydroxycoumarin anticoagulants. Drug Metab Rev 40:355–375CrossRefPubMedGoogle Scholar
  7. 7.
    Patel AA, Lad HB, Pandya KR, Patel CV, Brahmbhatt DI (2013) Synthesis of a new series of 2-(2-oxo-2H-chromen-3-yl)-5H-chromeno [4, 3-b] pyridin-5-ones by two facile methods and evaluation of their antimicrobial activity. Med Chem Res 22:4745–4754CrossRefGoogle Scholar
  8. 8.
    Céspedes CL, Avila JG, Martínez A, Serrato B, Calderón-Mugica JC, Salgado-Garciglia R (2006) Antifungal and antibacterial activities of Mexican tarragon (Tagetes lucida). J Agric Food Chem 54:3521–3527CrossRefPubMedGoogle Scholar
  9. 9.
    Chohan ZH, Shaikh AU, Rauf A, Supuran CT (2006) Antibacterial, antifungal and cytotoxic properties of novel N-substituted sulfonamides from 4-hydroxycoumarin. J Enzyme Inhib Med Chem 21:741–748CrossRefPubMedGoogle Scholar
  10. 10.
    Rehman SU, Chohan ZH, Gulnaz F, Supuran CT (2005) In-vitro antibacterial, antifungal and cytotoxic activities of some coumarins and their metal complexes. J Enzyme Inhib Med Chem 20:333–340CrossRefPubMedGoogle Scholar
  11. 11.
    Kirkiacharian BS, De Clercq E, Kurkjian R, Pannecouque C (2008) New synthesis and anti-HIV and antiviral properties of 3-arylsulfonyl derivatives of 4-ydroxycoumarin and 4-hydroxyquinolone. Pharm Chem J 42:265–270CrossRefGoogle Scholar
  12. 12.
    Završnik D, Muratović S, Špirtović S, Softić D, Medić-Šarić M (2008) The synthesis and antimicrobial activity of some 4-hydroxycoumarin derivatives. Bosn J Basic Medi Sci 8:277–281CrossRefGoogle Scholar
  13. 13.
    Kumar Arya A, Rana K, Kumar M (2014) A facile synthesis and anticancer activity evaluation of spiro analogues of benzothiazolylchromeno/pyrano derivatives. Lett Drug Des Discov 11:594–600CrossRefGoogle Scholar
  14. 14.
    Chen Z, Bi J, Su W (2013) Synthesis and antitumor activity of novel coumarin derivatives via a three-component reaction in water. Chin J Chem 31:507–514CrossRefGoogle Scholar
  15. 15.
    Tasdemir D, Kaiser M, Brun R, Yardley V, Schmidt TJ, Tosun F, Rüedi P (2006) Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: in vitro, in vivo, structure-activity relationship, and quantitative structure-activity relationship studies. Antimicrob Agents Chemother 50:1352–1364CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang M, Chen F, Guan J, Zhao J, Zhang J, Zhao R (2009) Synthesis and insecticidal activity of new 4-hydroxy-2H-1-benzopyran-2-one derivatives. Appl Biochem Biotechnol 159:768–777CrossRefPubMedGoogle Scholar
  17. 17.
    Kotharkar SA, Shinde DB (2006) Synthesis of antimicrobial 2, 9, 10-trisubstituted-6-oxo-7, 12-dihydro-chromeno [3, 4-b] quinoxalines. Bioorg Med Chem Lett 16:6181–6184CrossRefPubMedGoogle Scholar
  18. 18.
    Edenharder R, Tang X (1997) Inhibition of the mutagenicity of 2-nitrofluorene, 3-nitrofluoranthene and 1-nitropyrene by flavonoids, coumarins, quinones and other phenolic compounds. Food Chem Toxicol 35:357–372CrossRefPubMedGoogle Scholar
  19. 19.
    Foti M, Piattelli M, Baratta MT, Ruberto G (1996) Flavonoids, coumarins, and cinnamic acids as antioxidants in a micellar system. Structure–activity relationship. J Agric Food Chem 44:497–501CrossRefGoogle Scholar
  20. 20.
    Jung J-C, Park O-S (2009) Synthetic approaches and biological activities of 4-hydroxycoumarin derivatives. Molecules 14:4790–4803CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Ahmad R, Asad M, Siddiqui ZN, Kumar A (2009) Screening of synthetic new heterocyclic derivatives of 3-formyl-4-hydroxycoumarin for anti-inflammatory activity in albino rats. Asian J Pharm Res Health Care 1:46–62Google Scholar
  22. 22.
    Luchini AC, Rodrigues-Orsi P, Cestari SH, Seito LN, Witaicenis A, Pellizzon CH, Di Stasi LC (2008) Intestinal anti-inflammatory activity of coumarin and 4-hydroxycoumarin in the trinitrobenzenesulphonic acid model of rat colitis (pharmacology). Biol Pharm Bull 31:1343–1350CrossRefPubMedGoogle Scholar
  23. 23.
    Chiang C-C, Mouscadet J-F, Tsai H-J, Liu C-T, Hsu L-Y (2007) Synthesis and HIV-1 integrase inhibition of novel bis-or tetra-coumarin analogues. Chem Pharm Bull 55:1740–1743CrossRefPubMedGoogle Scholar
  24. 24.
    Khan KM, Iqbal S, Lodhi MA, Maharvi GM, Choudhary MI, Perveen S (2004) Biscoumarin: new class of urease inhibitors; economical synthesis and activity. Bioorg Med Chem 12:1963–1968CrossRefPubMedGoogle Scholar
  25. 25.
    Khan KM, Iqbal S, Lodhi MA, Maharvi GM, Perveen S, Choudhary M, Atta-ur-Rahman Chohan ZH, Supuran CT (2004) Synthesis and urease enzyme inhibitory effects of some dicoumarols. J Enzyme Inhib Med Chem 19:367–371CrossRefPubMedGoogle Scholar
  26. 26.
    Liu M, Cong XJ, Li P, Tan JJ, Chen WZ, Wang CX (2009) Study on the inhibitory mechanism and binding mode of the hydroxycoumarin compound NSC158393 to HIV-1 integrase by molecular modeling. Biopolymers 91:700–709CrossRefPubMedGoogle Scholar
  27. 27.
    Yang EB, Zhao YN, Zhang K, Mack P (1999) Daphnetin, one of coumarin derivatives, is a protein kinase inhibitor. Biochem Biophys Res Commun 260:682–685CrossRefPubMedGoogle Scholar
  28. 28.
    Abdou MM, El-Saeed RA, Bondock S (2015) Recent advances in 4-hydroxycoumarin chemistry. Part 1: synthesis and reactions. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2015.1006.1012 (in Press) CrossRefGoogle Scholar
  29. 29.
    Abdou MM, El-Saeed RA, Bondock S (2015) Recent advances in 4-hydroxycoumarin chemistry. Part 2: scaffolds for heterocycle molecular diversity. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2015.1006.1029 (in Press) CrossRefGoogle Scholar
  30. 30.
    Mohammadi Ziarani G, Moradi R, Lashgari N (2015) Asymmetric synthesis of chiral 3, 3-disubstituted oxindoles using isatin as starting material. Tetrahedron Asymmetry 26:517–541CrossRefGoogle Scholar
  31. 31.
    Moradi R, Mohammadi Ziarani G, Lashgari N (2017) Recent applications of isatin in the synthesis of organic compounds. Arkivoc i:148–201CrossRefGoogle Scholar
  32. 32.
    Mohammadi Ziarani G, Moradi R, Ahmadi T, Lashgari N (2018) Recent advances in the application of indoles in multicomponent reactions. RSC Adv 8:12069–12103CrossRefGoogle Scholar
  33. 33.
    Rahimifard M, Mohammadi Ziarani G, Malekzadeh Lashkariani B (2014) Application of guanidine and its salts in multicomponent reactions. Turk J Chem 38:345–371CrossRefGoogle Scholar
  34. 34.
    Mohammadi Ziarani G, Moradi R, Lashgari N (2015) Synthesis of spiro-fused heterocyclic scaffolds through multicomponent reactions involving isatin. Arkivoc 2016:1–81Google Scholar
  35. 35.
    Mannich C, Krösche W (1912) Ueber ein kondensationsprodukt aus formaldehyd, ammoniak und antipyrin. Arch Pharm 250:647–667CrossRefGoogle Scholar
  36. 36.
    Blicke F (2004) The Mannich reaction. Org React 1:303–341Google Scholar
  37. 37.
    Baghery S, Zolfigol MA, Schirhagl R, Hasani M (2017) [1,4-DHPyrazine][C(CN)3]2 as a new nano molten salt catalyst for the synthesis of novel piperazine based bis(4-hydroxy-2H-chromen-2-one) derivatives. Catal Lett 147:2083–2099CrossRefGoogle Scholar
  38. 38.
    Montagut-Romans A, Boulven M, Lemaire M, Popowycz F (2016) 3-Methylene-2,4-chromandione in situ trapping: introducing molecular diversity on 4-hydroxycoumarin. RSC Adv 6:4540–4544CrossRefGoogle Scholar
  39. 39.
    Sashidhara KV, Palnati GR, Singh LR, Upadhyay A, Avula SR, Kumar A, Kant R (2015) Molecular iodine catalysed one-pot synthesis of chromeno[4,3-b]quinolin-6-ones under microwave irradiation. Green Chem 17:3766–3770CrossRefGoogle Scholar
  40. 40.
    Sangshetti JN, Khan FAK, Kute CS, Zaheer Z, Ahmed RZ (2015) One-pot three-component synthesis of 3-(α-aminobenzyl)-4-hydroxycoumarin derivatives using nanocrystalline TiO2 as reusable catalyst. Russ J Org Chem 51:69–73CrossRefGoogle Scholar
  41. 41.
    Ghandi M, Babazadeh E (2015) Expedient synthesis of novel coumarin-based sulfonamides. J Iran Chem Soc 12:379–387CrossRefGoogle Scholar
  42. 42.
    Anaraki-Ardakani H, Charoosea A (2015) An efficient synthesis of functionalized 3-(α-amidobenzyl)-4-hydroxycoumarin derivatives by ZnO nanoparticles promoted condensation reaction between aromatic aldehyde, 4-hydroxycoumarin, and amides. Orien J Chem 31:1455–1460CrossRefGoogle Scholar
  43. 43.
    Azarifar D, Yami RN (2010) Ultrasonic-assisted one-pot synthesis of pyrazolo [1, 2-a][1, 2, 4] triazole-1, 3-diones. Heterocycles 81:2063–2073CrossRefGoogle Scholar
  44. 44.
    Riley HA, Gray AR (1943) Phenylglyoxal. Org Syn Coll 2:509Google Scholar
  45. 45.
    Karami B, Khodabakhshi S, Nikrooz M (2011) Synthesis of aza-polycyclic compounds: novel phenazines and quinoxalines using molybdate sulfuric acid (MSA). Polycycl Aromat Compd 31:97–109CrossRefGoogle Scholar
  46. 46.
    Khodabakhshi S, Karami B, Eskandari K (2015) Molybdate sulfuric acid-catalyzed one-pot synthesis of substituted coumarins under solvent-free conditions. Res Chem Intermed 41:7263–7272CrossRefGoogle Scholar
  47. 47.
    Khodabakhshi S, Abbasabadi MK, Baghrnejad M, Marahel F (2015) A green strategy to prepare warfarin-like compounds catalyzed by zirconium oxychloride. J Chin Chem Soc 62:9–12CrossRefGoogle Scholar
  48. 48.
    Gao Y, Zhang GN, Wang J, Bai X, Li Y, Wang Y (2018) One-pot synthesis of 3-Functionalized 4-hydroxycoumarin under catalyst-free conditions. Molecules 23:235–245CrossRefPubMedCentralGoogle Scholar
  49. 49.
    Chang X, Zhang X, Chen Z (2018) FeCl3 or MeSO3 H-promoted multicomponent reactions for facile synthesis of structurally diverse furan analogues. Org Biomol Chem 16:4279–4287CrossRefPubMedGoogle Scholar
  50. 50.
    Dar AA, Hussain S, Dutta D, Iyer PK, Khan AT (2015) One-pot synthesis of functionalized 4-hydroxy-3-thiomethylcoumarins: detection and discrimination of Co2+ and Ni2+ ions. RSC Adv 5:57749–57756CrossRefGoogle Scholar
  51. 51.
    Michael A (1887) Ueber die Addition von Natriumacetessig- und Natriummalonsäureäthern zu den Aethern ungesättigter Säuren” [On the addition of sodium acetoacetate- and sodium malonic acid esters to the esters of unsaturated acids. J Parkt Chem 35:349–356CrossRefGoogle Scholar
  52. 52.
    Noomen A (1997) Applications of Michael addition chemistry in coatings technology. Prog Org Coat 32:137–142CrossRefGoogle Scholar
  53. 53.
    Huang G, Li X (2017) Applications of Michael addition reaction in organic synthesis. Curr Org Synth 14:568–571CrossRefGoogle Scholar
  54. 54.
    Xu LW, Xia CG (2005) A catalytic enantioselective aza-Michael reaction: novel protocols for asymmetric synthesis of β-amino carbonyl compounds. Eur J Org Chem 2005:633–639CrossRefGoogle Scholar
  55. 55.
    Bhattacharjee S, Khan AT (2016) Synthesis of 3-substituted carboxylate/carboxamide flavone derivatives from 4-hydroxycoumarin, β-nitrostyrene and alcohol/amine using multicomponent reaction. Tetrahedron Lett 57:1831–1834CrossRefGoogle Scholar
  56. 56.
    Xue S, Li Y, Wang L, Liu J, Qing X, Wang C (2016) Four-component reaction of substituted β-nitrostyrenes, cyclohexanones, activated methylene compounds, and ammonium acetate: efficient strategy for construction of tetrahydroindole skeletons. Synlett 27:1083–1090CrossRefGoogle Scholar
  57. 57.
    Friedel C, Crafts JM (1877) Sur une nouvelle méthode générale de synthèse d’hydrocarbures, d’acétones, etc. Compt Rend 84:1392–1395Google Scholar
  58. 58.
    McCullagh JV, Daggett KA (2007) Synthesis of triarylmethane and xanthene dyes using electrophilic aromatic substitution reactions. J Chem Educ 84:1799Google Scholar
  59. 59.
    Gore P (1955) The Friedel–Crafts acylation reaction and its application to polycyclic aromatic hydrocarbons. Chem Rev 55:229–281CrossRefGoogle Scholar
  60. 60.
    Khodabakhshi S, Karami B, Eskandari K, Rashidi A (2015) A facile and practical p-toluenesulfonic acid catalyzed route to dicoumarols containing an aroyl group. S Afr J Chem 68:53–56CrossRefGoogle Scholar
  61. 61.
    Bharti R, Parvin T (2015) Molecular diversity from the l-proline-catalyzed, three-component reactions of 4-hydroxycoumarin, aldehyde, and 3-aminopyrazole or 1,3-dimethyl-6-aminouracil. Synth Commun 45:1442–1450CrossRefGoogle Scholar
  62. 62.
    Dong H, Xu L, Li SS, Wang L, Shao CL, Xiao J (2016) Facile synthesis of azaarene-substituted hydroxycoumarins possessing high biological activities via three-component C(sp3)-H functionalization. ACS Comb Sci 18:604–610CrossRefPubMedGoogle Scholar
  63. 63.
    Eskandari K, Karami B (2016) Graphene oxide nanosheets-catalyzed synthesis of novel benzylbarbiturocoumarin derivatives under green conditions. Monatsh Chem 147:2119–2126CrossRefGoogle Scholar
  64. 64.
    Eskandari K, Karami B, Farahi M, Mouzari V (2016) Silica sodium carbonate catalyzed in water synthesis of novel benzylbarbiturocoumarin derivatives. Tetrahedron Lett 57:487–491CrossRefGoogle Scholar
  65. 65.
    Bharti R, Parvin T (2015) Diversity oriented synthesis of tri-substituted methane containing aminouracil and hydroxynaphthoquinone/hydroxycoumarin moiety using organocatalysed multicomponent reactions in aqueous medium. RSC Adv 5:66833–66839CrossRefGoogle Scholar
  66. 66.
    Vukovic N, Sukdolak S, Solujic S, Niciforovic N (2010) Substituted imino and amino derivatives of 4-hydroxycoumarins as novel antioxidant, antibacterial and antifungal agents: synthesis and in vitro assessments. Food Chem 120:1011–1018CrossRefGoogle Scholar
  67. 67.
    Maresca A, Scozzafava A, Supuran CT (2010) 7, 8-Disubstituted-but not 6, 7-disubstituted coumarins selectively inhibit the transmembrane, tumor-associated carbonic anhydrase isoforms IX and XII over the cytosolic ones I and II in the low nanomolar/subnanomolar range. Bioorg Med Chem Lett 20:7255–7258CrossRefPubMedGoogle Scholar
  68. 68.
    Carta F, Maresca A, Scozzafava A, Supuran CT (2012) Novel coumarins and 2-thioxo-coumarins as inhibitors of the tumor-associated carbonic anhydrases IX and XII. Bioorg Med Chem 20:2266–2273CrossRefPubMedGoogle Scholar
  69. 69.
    Yang C, Su WQ, Xu DZ (2016) Ionic liquid [Dabco-H][AcO] as a highly efficient and recyclable catalyst for the synthesis of various bisenol derivatives: via domino Knoevenagel–Michael reaction in aqueous media. RSC Adv 6:99656–99663CrossRefGoogle Scholar
  70. 70.
    Maleki B (2016) Green synthesis of bis-coumarin and dihydropyrano[3,2-c]chromene derivatives catalyzed by o-benzenedisulfonimide. Org Prep Proc Int 48:303–318CrossRefGoogle Scholar
  71. 71.
    Kiasat AR, Hemat-Alian L (2015) Phospho sulfonic acid: a versatile and efficient solid acid catalyst for facile synthesis of bis-(4-hydroxycoumarin-3-yl) methanes under solvent-free conditions. Res Chem Intermed 41:873–880CrossRefGoogle Scholar
  72. 72.
    Khodabakhshi S, Marahel F, Rashidi A, Abbasabadi MK (2015) A green synthesis of substituted coumarins using nano graphene oxide as recyclable catalyst. J Chin Chem Soc 62:389–392CrossRefGoogle Scholar
  73. 73.
    Pankratov AN, Fedotova OV, Ozerova AG, Mazhukina OA, Strashilina IV (2016) Structure and stabilization factors of the 2-aminobenzimidazolium–3,3′-(phenylmethylene)- bis(4-hydroxy-2H-chromen-2-one) anion associate in the system 4-hydroxy-2H-chromen-2-one–benzimidazol-2-amine–benzaldehyde. Russ J Org Chem 52:1326–1334CrossRefGoogle Scholar
  74. 74.
    Li J, Xue XY, Li X, Hou Z, Yang XH, Qu D, Zhou Y, Zhang ZD, Luo XX, Li JT, Li MK (2016) Synthesis of biscoumarin and dihydropyran derivatives as two novel classes of potential anti-bacterial derivatives. Arch Pharm Res 39:1349–1355CrossRefPubMedGoogle Scholar
  75. 75.
    Kupwade RV, Pandit KS, Desai UV, Kulkarni MA, Wadgaonkar PP (2016) Diethylamine-catalyzed environmentally benign synthesis of 1-oxo-hexahydroxanthenes and bis-coumarins at ambient temperature. Res Chem Intermed 42:6313–6325CrossRefGoogle Scholar
  76. 76.
    Heravi MM, Daraie M (2016) Mn(pbdo)2Cl2/MCM-41 as a green catalyst in multicomponent syntheses of some heterocycles. Res Chem Intermed 42:2979–2988CrossRefGoogle Scholar
  77. 77.
    Khaskel A, Barman P, Jana U (2015) L-Tyrosine loaded nanoparticles: an efficient catalyst for the synthesis of dicoumarols and Hantzsch 1,4-dihydropyridines. RSC Adv 5:13366–13373CrossRefGoogle Scholar
  78. 78.
    Shirini F, Fallah-Shojaei A, Samavi L, Abedini M (2016) A clean synthesis of bis(indolyl)methane and biscoumarin derivatives using P4VPy–CuO nanoparticles as a new, efficient and heterogeneous polymeric catalyst. RSC Adv 6:48469–48478CrossRefGoogle Scholar
  79. 79.
    Kiyani H, Darbandi H (2017) An expeditious and green synthesis of 3,3′-(arylmethylene)-bis-(4-hydroxycoumarins) catalyzed by 5-sulfosalicylic acid. Chiang Mai J Sci 44:1002–1010Google Scholar
  80. 80.
    Nikpassand M, Fekri LZ, Sahrapeima S (2017) Grinding technique for the tandem synthesis of BIS coumarinyl methanes using [BDBDMIm]Br-CAN. Bull Chem Soc Ethiop 31:323–329CrossRefGoogle Scholar
  81. 81.
    Shirini F, Lati MP (2017) BiVO4-NPs: an efficient nano-catalyst for the synthesis of biscoumarins, bis(indolyl)methanes and 3,4-dihydropyrimidin-2(1H)-ones (thiones) derivatives. J Iran Chem Soc 14:75–87CrossRefGoogle Scholar
  82. 82.
    Azizi N, Abbasi F, Abdoli-Senejani M (2018) Natural acidic ionic liquid immobilized on magnetic silica: preparation and catalytic performance in chemoselective synthesis of dicoumarols and substituted xanthene derivatives. Chem Select 3:3797–3802Google Scholar
  83. 83.
    Kauthale SS, Tekale SU, Jadhav KM, Pawar RP (2016) Ethylene glycol promoted catalyst-free pseudo three-component green synthesis of bis(coumarin)s and bis(3-methyl-1-phenyl-1H-pyrazol-5-ol)s. Mol Divers 20:763–770CrossRefPubMedGoogle Scholar
  84. 84.
    Elinson MN, Vereshchagin AN, Sokolova OO (2017) Fast highly efficient ‘on-solvent’ non-catalytic cascade transformation of benzaldehydes and 4-hydroxycoumarin into bis(4-hydroxycoumarinyl)arylmethanes. Arkivoc 2017:121–129CrossRefGoogle Scholar
  85. 85.
    Nadaf AN, Shivashankar K (2018) CFL light promoted one-pot synthesis of pyrano[3,2-c]chromen-5(4H)-ones. Synth Commun 48:809–815CrossRefGoogle Scholar
  86. 86.
    El-Samahy FA, Abd El Salam HA, El-Sayed NF, Shalaby EM, Dondeti MF (2017) Synthesis of unexpected novel bis-coumarin derivatives via three component reactions of 4-hydroxycoumarin, aldehydes and cyclic secondary amines. Conformation in the solid state and pharmacological evaluation. J Chem Sci 72:705–716Google Scholar
  87. 87.
    Li J, Lv CW, Li XJ, Qu D, Hou Z, Jia M, Luo XX, Lie X, Li MK (2015) Synthesis of biscoumarin and dihydropyran derivatives and evaluation of their antibacterial activity. Molecules 20:17469–17482CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Saha A, Payra S, Verma SK, Mandal M, Thareja S, Banerjee S (2015) In silico binding affinity to cyclooxygenase-II and green synthesis of benzylpyrazolyl coumarin derivatives. RSC Adv 5:100978–100983CrossRefGoogle Scholar
  89. 89.
    Yaragorla S, Pareek A, Dada R (2015) Ca(II)-catalyzed, one-pot four component synthesis of functionally embellished benzylpyrazolyl coumarins in water. Tetrahedron Lett 56:4770–4774CrossRefGoogle Scholar
  90. 90.
    Eskandari K, Karami B, Khodabakhshi S, Farahi M (2015) A highly efficient Tandem Knoevenagel/Michael reaction using Mohr’s salt hexahydrate as a green and powerful catalyst: selective synthesis of benzylpyrazolocoumarins on water. J Chin Chem Soc 62:473–478CrossRefGoogle Scholar
  91. 91.
    Chitreddy SV, Shanmugam S (2017) Solvent free-synthesis of highly functionalized 4H-chromene-3-carboxamide derivatives using cerium ammonium nitrate and their antioxidant, antibacterial and solvatochromism studies. J Mol Liq 243:494–502CrossRefGoogle Scholar
  92. 92.
    An L, Sun X, Zhang L, Zhou J, Zhu F, Shen Z (2016) A practical and diastereoselective synthesis of dihydrofurocoumarin from pyridinium ylides in aqueous medium. J Chem Res 40:698–703CrossRefGoogle Scholar
  93. 93.
    Rajesh SM, Perumal S, Menéndez JC, Pandian S, Murugesan R (2012) Facile ionic liquid-mediated, three-component sequential reactions for the green, regio-and diastereoselective synthesis of furocoumarins. Tetrahedron 68:5631–5636CrossRefGoogle Scholar
  94. 94.
    Borah P, Naidu PS, Bhuyan PJ (2015) Synthesis of functionalized dihydrofurocoumarin derivatives from 3-aminoalkyl-4-hydroxycoumarin. Synth Commun 45:1533–1540CrossRefGoogle Scholar
  95. 95.
    Salari M, Mosslemin MH, Hassanabadi A (2016) Choline hydroxide as an efficient catalyst for the diastereoselective synthesis of trans-2,3-dihydrofuro[3,2-c]coumarins in an aqueous medium. J Chem Res 40:655–658CrossRefGoogle Scholar
  96. 96.
    Safaei-Ghomi J, Babaei P, Shahbazi-Alavi H, Pyne SG, Willis AC (2016) A concise synthesis of furo[3,2-c]coumarins catalyzed by nanocrystalline ZnZr4(PO4)6 ceramics under microwave irradiation. J Iran Chem Soc 13:1439–1448CrossRefGoogle Scholar
  97. 97.
    Wadhwa D, Arora V, Arora L, Arora P, Parkash O (2016) Synthesis of naphthalene functionalized trans-2,3-dihydrofuro[3,2-c]coumarins as antioxidant and anthelmintic agents. J Heterocycl Chem 53:1030–1035CrossRefGoogle Scholar
  98. 98.
    Kale A, Bingi C, Sripada S, Ganesh Kumar C, Atmakur K (2016) A simple, one pot synthesis of furo[3,2-c]chromenes and evaluation of antimicrobial activity. Bioorg Med Chem Lett 26:4899–4902CrossRefPubMedGoogle Scholar
  99. 99.
    Abbasi-Dehnavi H, Ghashang M (2018) Solvent-free preparation of 3-aryl-2-[(aryl)(arylamino)]methyl-4H-furo[3,2-c]chromen-4-one derivatives using ZnO-ZnAl2O4 nanocomposite as a heterogeneous catalyst. Heterocycl Commun 24:19–22CrossRefGoogle Scholar
  100. 100.
    Tietze LF, Beifuss U (1993) Sequential transformations in organic chemistry: a synthetic strategy with a future. Angew Chem Int Ed 32:131–163CrossRefGoogle Scholar
  101. 101.
    Zha D, Li H, Wang L (2016) Silver-promoted Cascade reaction of 4-hydroxycoumarins with α-keto acids under microwave irradiation: one-step construction of quaternary stereocenters. Eur J Org Chem 2016:4907–4915CrossRefGoogle Scholar
  102. 102.
    Shaabani A, Shaabani S, Seyyedhamzeh M, Sangachin MH, Hajishaabanha F (2016) Guanidinium-based sulfonic acid: an efficient Bronsted acid organocatalyst for the synthesis of fused polycyclic dihydropyridines in water. Res Chem Intermed 42:7247–7256CrossRefGoogle Scholar
  103. 103.
    Kumari S, Rajeswari M, Khurana JM (2016) A green approach for the synthesis of novel 7,11-dihydro6 h-chromeno[3,4-e]isoxazolo[5,4-b]pyridin-6-one derivatives using acidic ionic liquid [C4mim][HSO4]. Aust J Chem 69:1049–1053CrossRefGoogle Scholar
  104. 104.
    Rahimzadeh G, Bahadorikhalili S, Kianmehr E, Mahdavi M (2017) Ionic liquid-functionalized magnetic nanostructures as an efficient catalyst for the synthesis of 6H-chromeno[4,3-b]quinolin-6-ones. Mol Divers 21:597–609CrossRefPubMedGoogle Scholar
  105. 105.
    Li Z, Li XJ, Liu JQ, Wang XS (2017) One-pot three-component synthesis of 6H-chromeno[4,3-b] or cyclopenta[b]furo[3,2-f]quinoline derivatives. J Heterocycl Chem 54:2929–2934CrossRefGoogle Scholar
  106. 106.
    Paul S, Lee YR (2016) Eco-friendly construction of highly functionalized chromenopyridinones by an organocatalyzed solid-state melt reaction and their optical properties. Green Chem 18:1488–1494CrossRefGoogle Scholar
  107. 107.
    Liu M, Yin G, Zhu C, Yao C (2016) Selective synthesis of new tetracyclic coumarin-fused pyrazolo[3,4-b]pyridines and pyrazolo[3,4-b]pyridin-6(7H)-ones. J Heterocycl Chem 53:1617–1625CrossRefGoogle Scholar
  108. 108.
    Sayahi MH, Saghanezhad SJ, Mahdavi M (2018) SBA-15-SO3H-assisted preparation of 4-aza-phenanthrene-3, 10-dione derivatives via a one-pot, four-component reaction. Res Chem Intermed 44:739–747CrossRefGoogle Scholar
  109. 109.
    Yahya-Meymandi A, Nikookar H, Moghimi S, Mahdavi M, Firoozpour L, Asadipour A, Ranjbar PR, Foroumadi A (2017) An efficient four-component reaction for the synthesis of chromeno[4,3-b]quinolone derivatives. J Iran Chem Soc 14:771–775CrossRefGoogle Scholar
  110. 110.
    Kumari S, Khurana JM (2017) An efficient catalyst-free synthesis of novel chromeno[4,3-b]quinolones through Michael initiated ring closure (MIRC) reaction with in situ generated 3-(arylmethylene)chroman-2,4-diones. J Chem Sci 129:1225–1231CrossRefGoogle Scholar
  111. 111.
    Kausar N, Masum AA, Islam MM, Das AR (2017) A green synthetic approach toward the synthesis of structurally diverse spirooxindole derivative libraries under catalyst-free conditions. Mol Divers 21:325–337CrossRefPubMedGoogle Scholar
  112. 112.
    Kasralikar HM, Jadhavar SC, Bhusare SR (2015) Synthesis and molecular docking study of novel chromeno-chromenones as anti-HIV-1 NNRT inhibitors. Synlett 26:1969–1972CrossRefGoogle Scholar
  113. 113.
    Sabzi NE, Kiasat AR (2018) β-Cyclodextrin based nanosponge as a biodegradable porous three-dimensional nanocatalyst in the one-pot synthesis of N-containing organic scaffolds. Catal Lett 148:2654–2664CrossRefGoogle Scholar
  114. 114.
    Zhou T, Shi Q, Chen C-H, Huang L, Ho P, Morris-Natschke SL, Lee K-H (2012) Anti-AIDS agents 85. Design, synthesis, and evaluation of 1R, 2R-dicamphanoyl-3, 3-dimethyldihydropyrano-[2, 3-c] xanthen-7 (1H)-one (DCX) derivatives as novel anti-HIV agents. Eur J Med Chem 47:86–96CrossRefPubMedGoogle Scholar
  115. 115.
    Zhou T, Shi Q, Chen C-H, Zhu H, Huang L, Ho P, Lee K-H (2010) Anti-AIDS agents 79. Design, synthesis, molecular modeling and structure–activity relationships of novel dicamphanoyl-2′, 2′-dimethyldihydropyranochromone (DCP) analogs as potent anti-HIV agents. Bioorg Med Chem 18:6678–6689CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Abdolmohammadi S, Ghiasi R, Ahmadzadeh-Vatani S (2016) A highly efficient CuI nanoparticles-catalyzed synthesis of tetrahydrochromenediones and dihydropyrano[c]chromenediones under grinding. Z Naturforsch 71:777–782CrossRefGoogle Scholar
  117. 117.
    Parthasarathy K, Praveen C, Saranraj K, Balachandran C, Kumar PS (2016) Synthesis, antimicrobial and cytotoxic evaluation of spirooxindole[pyrano-bis-2H-l-benzopyrans]. Med Chem Res 25:2155–2170CrossRefGoogle Scholar
  118. 118.
    Parthasarathy K, Praveen C, Jeyaveeran JC, Prince AAM (2016) Gold catalyzed double condensation reaction: synthesis, antimicrobial and cytotoxicity of spirooxindole derivatives. Bioorg Med Chem Lett 26:4310–4317CrossRefPubMedGoogle Scholar
  119. 119.
    Karimi AR, Sourinia M, Dalirnasab Z, Karimi M (2015) Silica sulfuric acid magnetic nanoparticle: an efficient and ecofriendly catalyst for synthesis of spiro[2-amino-4 H -pyran-oxindole]s. Can J Chem 93:546–549CrossRefGoogle Scholar
  120. 120.
    Zakeri M, Nasef MM, Abouzari-Lotf E, Moharami A, Heravi MM (2015) Sustainable alternative protocols for the multicomponent synthesis of spiro-4H-pyrans catalyzed by 4-dimethylaminopyridine. Ind Eng Chem Res 29:273–281CrossRefGoogle Scholar
  121. 121.
    Karimi AR, Davood Abadi R, Dalirnasab Z (2015) Synthesis of mono- and bis-spiro-2-amino-4H-pyrans catalyzed by S-alkyl O-hydrogen sulfothioate functionalized silica-coated magnetic nanoparticles under ultrasound irradiation. Res Chem Intermed 41:7427–7435CrossRefGoogle Scholar
  122. 122.
    Khot SS, Anbhule PV, Desai UV, Wadgaonkar PP (2018) Tris-hydroxymethylaminomethane (THAM): an efficient organocatalyst in diversity-oriented and environmentally benign synthesis of spirochromenes. Compt Rend Chim 21:814–821CrossRefGoogle Scholar
  123. 123.
    Allahresani A, Taheri B, Nasseri MA (2018) A green synthesis of spirooxindole derivatives catalyzed by SiO2@gC3N4 nanocomposite. Res Chem Intermed 44:1173–1188CrossRefGoogle Scholar
  124. 124.
    Naeimi H, Lahouti S (2018) Sulfonated chitosan encapsulated magnetically Fe3O4 nanoparticles as effective and reusable catalyst for ultrasound-promoted rapid, three-component synthesis of spiro-4H-pyrans. J Iran Chem Soc 15:2017–2031CrossRefGoogle Scholar
  125. 125.
    Liu LJ, Yan CG (2015) Efficient synthesis of complex oxazatricycles via three-component reaction of isoquinolinium salts, acetone and cyclic diketones. J Heterocycl Chem 52:1513–1517CrossRefGoogle Scholar
  126. 126.
    Abaszadeh M, Seifi M (2015) Crown ether complex cation ionic liquids (CECILs) as environmentally benign catalysts for three-component synthesis of 4,5-dihydropyrano[3,2-c]chromene and 4,5-dihydropyrano[4,3-b]pyran derivatives. Res Chem Intermed 41:7715–7723CrossRefGoogle Scholar
  127. 127.
    Baziar A, Ghashang M (2016) Preparation of pyrano[3,2-c]chromene-3-carbonitriles using ZnO nano-particles: a comparison between the Box–Behnken experimental design and traditional optimization methods. React Kinet Mech Cat 118:463–479CrossRefGoogle Scholar
  128. 128.
    Vodnala S, Bhavani AKD, Kamutam R, Naidu VGM, Promila Prabhakar C (2016) DABCO-catalyzed one-pot three component synthesis of dihydropyrano[3,2-c]chromene substituted quinazolines and their evaluation towards anticancer activity. Bioorg Med Chem Lett 26:3973–3977CrossRefPubMedGoogle Scholar
  129. 129.
    Wang Y, Ye H, Zuo G, Luo J (2015) Synthesis of a novel poly (ethylene glycol) grafted N,N-dimethylaminopyridine functionalized dicationic ionic liquid and its application in one-pot synthesis of 3,4-dihydropyrano[3,2-c]chromene derivatives in water. J Mol Liq 212:418–422CrossRefGoogle Scholar
  130. 130.
    Hazeri N, Maghsoodlou MT, Mousavi MR, Aboonajmi J, Safarzaei M (2015) Potassium sodium tartrate as a versatile and efficient catalyst for the one-pot synthesis of pyran annulated heterocyclic compounds in aqueous media. Res Chem Intermed 41:169–174CrossRefGoogle Scholar
  131. 131.
    Tanna JA, Chaudhary RG, Gandhare NV, Rai AR, Yerpude S, Juneja HD (2016) Copper nanoparticles catalysed an efficient one-pot multicomponents synthesis of chromenes derivatives and its antibacterial activity. J Exp Nanosci 11:884–900CrossRefGoogle Scholar
  132. 132.
    Zolfigol MA, Bahrami-Nejad N, Afsharnadery F, Baghery S (2016) 1-Methylimidazolium tricyanomethanide [HMIM]C(CN)3 as a nano structure and reusable molten salt catalyst for the synthesis of tetrahydrobenzo[b]pyrans via tandem Knoevenagel–Michael cyclocondensation and 3,4-dihydropyrano[c]chromene derivatives. J Mol Liq 221:851–859CrossRefGoogle Scholar
  133. 133.
    Rohaniyan M, Davoodnia A, Nakhaei A (2016) Another application of (NH4)42 [MoVI72MoV60O372(CH3COO)30(H2O)72] as a highly efficient recyclable catalyst for the synthesis of dihydropyrano[3,2-c]chromenes. Appl Organomet Chem 30:626–629CrossRefGoogle Scholar
  134. 134.
    Kiyani H, Ghorbani F (2015) Potassium phthalimide: an efficient and simple organocatalyst for the one-pot synthesis of dihydropyrano[3,2-c]chromenes in aqueous media. Res Chem Intermed 41:4031–4046CrossRefGoogle Scholar
  135. 135.
    Al-bogami AS (2015) One-pot, three-component synthesis of novel pyrano[3,2-c]coumarins containing sulfone moiety utilizing ultrasonic irradiation as eco-friendly energy source. Res Chem Intermed 41:93–104CrossRefGoogle Scholar
  136. 136.
    Mobinikhaledi A, Moghanian H, Zohari A (2016) Piperazine catalyzed one-pot, three-component synthesis of 4H-chromene and 3,4-dihydropyrano[c]chromene derivatives under solvent-free conditions. Rev Roum Chim 61:35–39Google Scholar
  137. 137.
    Karimi-Jaberi Z, Moaddeli MS, Setoodehkhah M, Nazarifar MR (2016) Nano-copper chromite (nano-CuCr2O4): a novel and efficient catalyst for the synthesis of biscoumarin and pyrano[c]chromene derivatives in water at room temperature. Res Chem Intermed 42:4641–4650CrossRefGoogle Scholar
  138. 138.
    Khazaei A, Zolfigol MA, Karimitabar F, Nikokar I, Moosavi-Zare AR (2015) N,2-Dibromo-6-chloro-3,4-dihydro-2H-benzo[e][1, 2, 4]thiadiazine-7-sulfonamide 1,1-dioxide: an efficient and homogeneous catalyst for one-pot synthesis of 4H-pyran, pyranopyrazole and pyrazolo[1,2-b]phthalazine derivatives under aqueous media. RSC Adv 5:71402–71412CrossRefGoogle Scholar
  139. 139.
    Esmaeilpour M, Javidi J, Dehghani F, Nowroozi Dodeji F (2015) A green one-pot three-component synthesis of tetrahydrobenzo[b]pyran and 3,4-dihydropyrano[c]-chromene derivatives using a Fe3O4@SiO2–imid–PMAn magnetic nanocatalyst under ultrasonic irradiation or reflux conditions. RSC Adv 5:26625–26633CrossRefGoogle Scholar
  140. 140.
    Chen L, Lin J, Chen B, Zhao L (2017) Sodium ethylene diamine tetraacetate catalyzed synthesis of chromene derivatives via multi-component reactions at low catalyst loading. Res Chem Intermed 43:6691–6700CrossRefGoogle Scholar
  141. 141.
    Chehab S, Merroun Y, Ghailane T, Ghailane R, Boukhris S, Souizi A (2018) A green and efficient method for the synthesis of 3,4-dihydropyrano[c]chromene using phosphate fertilizers (MAP, DAP AND TSP) as heterogeneous catalysts. J Turk Chem Soc 5:355–370Google Scholar
  142. 142.
    Teimuri-Mofrad R, Esmati S, Tahmasebi S, Gholamhosseini-Nazari M (2018) Bisferrocene-containing ionic liquid supported on silica coated Fe3O4: a novel nanomagnetic catalyst for the synthesis of dihydropyrano[2,3-c]coumarin derivatives. J Organomet Chem 870:38–50CrossRefGoogle Scholar
  143. 143.
    Azizi H, Khorshidi A, Tabatabaeian K (2018) Efficient synthesis of 3,4-dihydropyrano[3,2-c]chromenes catalyzed by Ni(II)-functionalized Li + -Montmorillonite in a one-pot fashion under solvent-free conditions. J Iran Chem Soc 15:1023–1032CrossRefGoogle Scholar
  144. 144.
    Hojati SF, Amiri A, MoeiniEghbali N, Mohamadi S (2018) Polypyrrole/Fe3O4/CNT as a recyclable and highly efficient catalyst for one-pot three-component synthesis of pyran derivatives. Appl Organomet Chem.  https://doi.org/10.1002/aoc.4235 CrossRefGoogle Scholar
  145. 145.
    Mayank, Kaur Billing B, Agnihotri PK, Kaur N, Singh N, Jang DO (2018) Ionic liquid-coated carbon nanotubes as efficient metal-free catalysts for the synthesis of chromene derivatives. Acs Sustain Chem Eng 6:3714–3722CrossRefGoogle Scholar
  146. 146.
    Pourshojaei Y, Jadidi MH, Eskandari K, Foroumadi A, Asadipour A (2018) An eco-friendly synthesis of 4-aryl-substituted pyrano-fuzed coumarins as potential pharmacological active heterocycles using molybdenum oxide nanoparticles as an effective and recyclable catalyst. Res Chem Intermed 44:4195–4212CrossRefGoogle Scholar
  147. 147.
    Alizadeh A, Moafi L (2018) Simple and convenient method for the synthesis of pyrano[3, 2-c] chromenes via sequential three component reaction. Lett Org Chem 15:45–48Google Scholar
  148. 148.
    Jadhav AM, Lim KT, Jeong YS, Jeong YT (2018) A metal-free C–C/C–O bond formation for the synthesis of 2-amino-5-oxo-4-aryl-4H,5H-pyrano[3,2-c]chromene-3-carboxamide catalyzed by polystyrene-supported p-toluenesulfonic acid (PS-PTSA). Synth Commun 48:2232–2241CrossRefGoogle Scholar
  149. 149.
    Olyaei A, Shafie Z, Sadeghpour M (2018) An efficient and one-pot green synthesis of novel 6-oxo-7-aryl-6,7-dihydrochromeno pyrano[2,3-b]pyridine derivatives. Tetrahedron Lett 59:3567–3570CrossRefGoogle Scholar
  150. 150.
    Wan Y, Wang C, Wang HY, Zhao LL, Zhang XX, Shi JJ, Huang SY, Liu GX, Wu H (2015) Efficient one-pot syntheses of 7-alkyl-6H,7H-naphtho[1,2:5,6]pyrano-[3,2-c]chromen-6-ones by 1-methyl-3-(2-(sulfooxy)ethyl)-1H-imidazol-3-ium chloride. J Heterocycl Chem 51:1293–1297CrossRefGoogle Scholar
  151. 151.
    Piltan MJ, Safaei-Ghomi J (2016) Nano crystalline ZnO catalyzed one pot three-component synthesis of 7-alkyl-6H,7H-naphtho[1′,2′:5,6]pyrano[3,2-c] chromen-6-ones under solvent-free conditions. Bull Chem Soc Ethiop 30:289–296CrossRefGoogle Scholar
  152. 152.
    Mohaqeq M, Safaei-Ghomi J, Shahbazi-Alavi H (2015) ZrOCl2/nano TiO2 as an efficient catalyst for the one pot synthesis of naphthopyranopyrimidines under solvent-free conditions. Acta Chim Slov 62:967–972CrossRefPubMedGoogle Scholar
  153. 153.
    Safaei-Ghomi J, Eshteghal F, Shahbazi-Alavi H (2018) Novel ionic liquid supported on Fe3O4 nanoparticles as an efficient catalyst for the synthesis of new chromenes. Appl Organomet Chem.  https://doi.org/10.1002/aoc.3987 CrossRefGoogle Scholar
  154. 154.
    Fekri LZ, Nikpassand M, Pourmirzajani S, Aghazadeh B (2018) Synthesis and characterization of amino glucose-functionalized silica-coated NiFe2O4 nanoparticles: a heterogeneous, new and magnetically separable catalyst for the solvent-free synthesis of pyrano[3,2-c]chromen-5(4H)-ones. RSC Adv 8:22313–22320CrossRefGoogle Scholar
  155. 155.
    Mandal S, Dwari S, Jana CK (2018) Metal free C–H functionalization enabled diastereoselective multicomponent reaction of N-heterocycles to fused heteropolycycles. J Org Chem 83:8874–8887CrossRefPubMedGoogle Scholar
  156. 156.
    Abdolmohammadi S, Karimpour S (2016) Rapid and mild synthesis of quinazolinones and chromeno[d]pyrimidinones using nanocrystalline copper(I) iodide under solvent-free conditions. Chin Chem Lett 27:114–118CrossRefGoogle Scholar
  157. 157.
    Mehrabi H, Baniasad-Dashtabi M (2015) One-pot synthesis of novel heterocyclic chromenopyrimidine-2,5-dione and thioxochromenopyrimidin-5-one derivatives. J Chem Res 39:294–295CrossRefGoogle Scholar
  158. 158.
    Reddy AVS, Jeong YT (2016) Highly efficient and facile synthesis of densely functionalized thiazolo[3,2-a]chromeno[4,3-d]pyrimidin-6(7H)-ones using [Bmim] BF4 as a reusable catalyst under solvent-free conditions. Tetrahedron 72:116–122CrossRefGoogle Scholar
  159. 159.
    Sahu PK (2016) Eco-friendly grinding synthesis of a double-layered nanomaterial and the correlation between its basicity, calcination and catalytic activity in the green synthesis of novel fused pyrimidines. RSC Adv 6:78409–78423CrossRefGoogle Scholar
  160. 160.
    Mahire VN, Patel VE, Chaudhari AB, Gite VV, Mahulikar PP (2016) Silane@TiO2 nanoparticles-driven expeditious synthesis of biologically active benzo[4, 5]imidazo[1,2-a]chromeno[4,3-d]pyrimidin-6-one scaffolds: a green approach. J Chem Sci 128:671–679CrossRefGoogle Scholar
  161. 161.
    Neo AG, Castellano TG, Marcos CF (2015) Enol-Ugi reaction of hydroxycoumarins: straightforward synthesis of amino acid derived coumarin enamines. Synthesis 47:2431–2438CrossRefGoogle Scholar
  162. 162.
    Manjappa KB, Peng YT, Jhang WF, Yang DY (2016) Microwave-promoted, catalyst-free, multi-component reaction of proline, aldehyde, 1,3-diketone: one pot synthesis of pyrrolizidines and pyrrolizinones. Tetrahedron 72:853–861CrossRefGoogle Scholar
  163. 163.
    Irani S, Maghsoodlou MT, Hazeri N (2017) Efficient synthesis of new pyrano [2, 3-d] pyrimidine-2, 4-dione derivatives via a one-pot four-component reaction. J Iran Chem Soc 14:1189–1193CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryAlzahra UniversityTehranIran

Personalised recommendations