Fe3O4 MNPs as a green catalyst for syntheses of functionalized [1,3]-oxazole and 1H-pyrrolo-[1,3]-oxazole derivatives and evaluation of their antioxidant activity

  • Shahrzad AbdolmohammadiEmail author
  • Zinatossadat Hossaini
Original Article


In the present study, iron oxide magnetic nanoparticles (Fe3O4 MNPs) were synthesized in a green biosynthetic manner using aqueous extract of clover leaves. Fe3O4 MNPs were applied as a magnetically separable nanocatalyst for the green syntheses of functionalized [1,3]-oxazoles 1(a–e) and 1H-pyrrolo-[1,3]-oxazoles 4(a–i) as promising antioxidant compounds in excellent yields at 50 °C and room temperature, respectively. The antioxidant activities of the most stable compounds (1a, 1b, 4a, and 4b) were evaluated by both 2,2-diphenyl-1-picrylhydrazyl radical scavenging and ferric reduction activity potential assays. Compound 1b was shown a remarkable radical scavenging activity, and 4a was shown very good reducing activity relative to standards (BHT and TBHQ).

Graphical abstract


Antioxidant activity Clover leaves 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Fe3O4 MNPs Ferric reduction activity potential (FRAP) 1,3-Oxazole 1H-Pyrrolo-[1,3]-oxazole 


  1. 1.
    Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102CrossRefGoogle Scholar
  2. 2.
    Kim AY, Lee HJ, Park JC, Kang H, Yang H, Song H, Park KH (2009) Highly efficient and reusable copper-catalyzed N-arylation of nitrogen-containing heterocycles with aryl halides. Molecules 14(12):5169–5178CrossRefGoogle Scholar
  3. 3.
    Lin KS, Pan CY, Chowdhury S, Tu MT, Hong WT, Yeh CT (2011) Hydrogen generation using a CuO/ZnO-ZrO2 nanocatalyst for autothermal reforming of methanol in a microchannel reactor. Molecules 16(1):348–366CrossRefGoogle Scholar
  4. 4.
    Monopoli A, Nacci A, Caló V, Ciminale F, Cotugno P, Mangone A, Giannossa LC, Azzone P, Cioffi N (2010) Palladium/zirconium oxide nanocomposite as a highly recyclable catalyst for C–C coupling reactions in water. Molecules 15(7):4511–4525CrossRefGoogle Scholar
  5. 5.
    Huh YM, Jun YW, Song HT, Kim S, Choi JS, Lee JH, Yoon S, Kim KS, Shin JS, Suh JS, Cheon J (2005) In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 127(35):12387–12391CrossRefGoogle Scholar
  6. 6.
    Sharma P, Rana S, Barick KC, Kumar C, Salunke HG, Hassan PA (2014) Biocompatible phosphate anchored Fe3O4 nanocarriers for drug delivery and hyperthermia. New J Chem 38(11):5500–5508CrossRefGoogle Scholar
  7. 7.
    Gad Allah TA, Kato S, Satokawa S, Kojima T (2007) Role of core diameter and silica content in photocatalytic activity of TiO2/SiO2/Fe3O4 composite. Solid State Sci 9(8):737–743CrossRefGoogle Scholar
  8. 8.
    Ahmadi Golsefidi M, Sarkhosh B (2017) Preparation and characterization of rapid magnetic recyclable Fe3O4@SiO2@TiO2–Sn photocatalyst. J Iran Chem Soc 14(5):1089–1098CrossRefGoogle Scholar
  9. 9.
    Salamat S, Younesi H, Bahramifar N (2017) Synthesis of magnetic core–shell Fe3O4@TiO2 nanoparticles from electric arc furnace dust for photocatalytic degradation of steel mill wastewater. RSC Adv. 7(31):19391–19405CrossRefGoogle Scholar
  10. 10.
    Abdul Salam H, Sivaraj R, Venckatesh R (2014) Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth.-Lamiaceae leaf extract. Mater Lett 131:16–18CrossRefGoogle Scholar
  11. 11.
    Wei Y, Han B, Hu X, Lin Y, Wang X, Deng X (2012) Synthesis of Fe3O4 nanoparticles and their magnetic properties. Procedia Eng. 27:632–637CrossRefGoogle Scholar
  12. 12.
    Zarghani M, Akhlaghinia B (2016) Fe3O4 magnetic nanoparticles (MNPs) as an efficient catalyst for selective oxidation of benzylic and allylic C–H bonds to carbonyl compounds with tert-butyl hydroperoxide. RSC Advan. 6(45):38592–38601CrossRefGoogle Scholar
  13. 13.
    Yew YP, Shameli K, Miyake M, Kuwano N, Bt Ahmad Khairudin NB, Bt Mohamad SE, Lee KX (2016) Green synthesis of magnetite (Fe3O4) nanoparticles using Seaweed (Kappaphycus alvarezii) extract. Nanoscale Res Lett 11(1):276–282CrossRefGoogle Scholar
  14. 14.
    Anna CG, Helena IMB, Scott GF, Clifton EB, Brent RC (2005) Antimycobacterial natural products, synthesis and preliminary biological evaluation of the oxazole containing alkaloid texaline. Tetrahedron Lett 46(43):7355–7357CrossRefGoogle Scholar
  15. 15.
    George C, Martin N, Ray R (1973) Thiourea derivatives of 2-aminooxazoles showing antibacterial and antifungal activity. J Med Chem 16(12):1402–1405CrossRefGoogle Scholar
  16. 16.
    Lu X, Liu X, Wan B, Franzblau SG, Chen L, Zhou C, You Q (2012) Synthesis and evaluation of anti-tubercular and antibacterial activities of new 4-(2,6-dichlorobenzyloxy)phenyl thiazole, oxazole and imidazole derivatives. Part 2. Eur J Med Chem 49:164–171CrossRefGoogle Scholar
  17. 17.
    Kus C, Uğurlu E, Ozdamar ED, Can-Eke BC (2017) Synthesis and antioxidant properties of new oxazole-5(4H)-one derivatives. Turk J Pharm Sci 14(2):174–178CrossRefGoogle Scholar
  18. 18.
    George C, Michael JF (1971) Derivatives of 2-aminooxazoles showing antiinflammatory activity. J Med Chem 14(11):1075–1077CrossRefGoogle Scholar
  19. 19.
    Turchi IJ, Dewar MJS (1975) The chemistry of oxazoles. Chem Rev 75(4):389–437CrossRefGoogle Scholar
  20. 20.
    Wasserman HH, Gambale RJ (1985) Synthesis of (+)-antimycin A3. Use of the oxazole ring in protecting and activating functions. J Am Chem Soc 107(5):1423–1424CrossRefGoogle Scholar
  21. 21.
    Palmer DC, Venkatraman S (2004) Oxazoles: synthesis, reactions and spectroscopy, Part A. Wiley, HobokenCrossRefGoogle Scholar
  22. 22.
    Leaver IH, Milligan B (1984) Fluorescent whitening agents—a survey (1974–82). Dyes Pigm 5(2):109–144CrossRefGoogle Scholar
  23. 23.
    Källström K, Hedberg C, Brandt P, Bayer A, Andersson PG (2004) Rationally designed ligands for asymmetric iridium-catalyzed hydrogenation of olefins. J Am Chem Soc 126(44):14308–14309CrossRefGoogle Scholar
  24. 24.
    Linder J, Moody CJ (2007) The total synthesis of siphonazole, a structurally unusual bis-oxazole natural product. Chem Commun 15:1508–1509CrossRefGoogle Scholar
  25. 25.
    Shi B, Blake AJ, Campbell IB, Judkins BD, Moody CJ (2009) The rhodium carbene route to oxazoles: a remarkable catalyst effect. Chem Commun 3291–3293.
  26. 26.
    Shi, B.; Blake, A. J.; Lewis, W.; Campbell, I. B.; Judkins, B. D.; Moody, C. J. Rhodium carbene routes to oxazoles and thiazoles. catalyst effects in the synthesis of oxazole and thiazole carboxylates, phosphonates, and sulfones. J. Org. Chem. 2010, 75(1), 152-161Google Scholar
  27. 27.
    Austeri M, Rix D, Zeghida W, Lacour J (2011) CpRu-catalyzed O–H insertion and condensation reactions of α-diazocarbonyl compounds. Org Lett 13(6):1394–1397CrossRefGoogle Scholar
  28. 28.
    Honey MA, Pasceri R, Lewis W, Moody CJ (2012) Diverse trifluoromethyl heterocycles from a single precursor. J Org Chem 77(3):1396–1405CrossRefGoogle Scholar
  29. 29.
    Xu X, Zavalij PY, Hu W, Doyle MP (2012) Efficient synthesis of oxazoles by dirhodium(II)-catalyzed reactions of styryl diazoacetate with oximes. Chem Commun 48(94):11522–11524CrossRefGoogle Scholar
  30. 30.
    Wang CS, Zhu RY, Zheng J, Shi F, Tu SJ (2015) Enantioselective construction of spiro[indoline-3,2′-pyrrole] framework via catalytic asymmetric 1,3-dipolar cycloadditions using allenes as equivalents of alkynes. J Org Chem 80(1):512–520CrossRefGoogle Scholar
  31. 31.
    Dai W, Jiang XL, Wu Q, Shi F, Tu SJ (2015) Diastereo- and enantioselective construction of 3,3′-pyrrolidinyldispirooxindole framework via catalytic asymmetric 1,3-dipolar cycloadditions. J Org Chem 80(11):5737–5744CrossRefGoogle Scholar
  32. 32.
    Wang YM, Zhang HH, Li C, Fan T, Shi F (2016) Catalytic asymmetric chemoselective 1,3-dipolar cycloadditions of an azomethine ylide with isatin-derived imines: diastereo- and enantioselective construction of a spiro[imidazolidine-2,3′-oxindole] framework. Chem Commun 52(9):1804–1807CrossRefGoogle Scholar
  33. 33.
    Jiang F, Zhao D, Yang X, Yuan FR, Mei GJ, Shi F (2017) Catalyst-controlled chemoselective and enantioselective reactions of tryptophols with isatin-derived imines. ACS Catal 7(10):6984–6989CrossRefGoogle Scholar
  34. 34.
    Ma C, Zhou JY, Zhang YZ, Mei GJ, Shi F (2018) Catalytic asymmetric [2 + 3] cyclizations of azlactones with Azonaphthalenes. Angew Chem Int Ed 57(19):5398–5402CrossRefGoogle Scholar
  35. 35.
    Haerizade BN, Kassaee MZ (2014) Nano ZnO promoted synthesis of 1,3-oxazoline-2-thione derivatives. J Chem Res 38(5):295–296CrossRefGoogle Scholar
  36. 36.
    Yavari I, Souri S, Sirouspour M (2008) Efficient one-pot synthesis of unsymmetrical 2-thioparabanic acids from oxalyl chloride, benzoyl isothiocyanate, and primary amines. Synlett 11:1633–1634CrossRefGoogle Scholar
  37. 37.
    Saundane AR, Nandibeoor MK (2015) Synthesis, characterization, and biological evaluation of Schiff bases containing indole moiety and their derivatives. Monatsh Chem 146(10):1751–1761CrossRefGoogle Scholar
  38. 38.
    Bidchol AM (2011) Free radical scavenging activity of aqueous and ethanolic extract of Brassica oleracea L. var. italica. Food Bioprocess Technol 4(7):1137–1143CrossRefGoogle Scholar
  39. 39.
    Oyaizu M (1986) Antioxidative activities of products of browning reaction prepared from glucosamine. J Acad Nutr Diet 44(6):307–315CrossRefGoogle Scholar
  40. 40.
    Shimada K, Fujikawa K, Yahara K, Nakamura T (1992) Antioxidative properties of xanthan on the autioxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem 40(6):945–948CrossRefGoogle Scholar
  41. 41.
    Yildirim A, Mavi A, Kara AA (2003) Antioxidant and antimicrobial activities of Polygonum cognatum Meissn extracts. J Sci Food Agric 83(1):64–69CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shahrzad Abdolmohammadi
    • 1
    Email author
  • Zinatossadat Hossaini
    • 2
  1. 1.Department of Chemistry, East Tehran BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Chemistry, Qaemshahr BranchIslamic Azad UniversityQaemshahrIran

Personalised recommendations