Advertisement

Aroyl and acyl cyanides as orthogonal protecting groups or as building blocks for the synthesis of heterocycles

  • Kamal Usef SadekEmail author
  • Ramadan Ahmed Mekheimer
  • Mohamed Abd-Elmonem
  • Mohamed Hilmy Elnagdi
Short Review
  • 55 Downloads

Abstract

α-Cyanoketones represent a synthetically attractive scaffold possessing bifunctional reactivity which enabled synthesis of a diversity of products. This involves reaction of nucleophiles with electrophilic carbonyl carbon performing an efficient and regioselective way to acylation reaction, cycloaddition of activated cyano function with dipolarophiles, metal-catalyzed cross-dehydrogenative coupling carbocyanation across C–C multiple bonds as well as hydrocyanation. This review provides the recent developments in the chemistry of α-cyanoketones which will be beneficial for researchers and scientists in such field.

Graphical abstract

Keywords

α-Cyanoketones Cycloaddition reaction Regioselective acylation CDC carbocyanation Carbocyanation 

Notes

References

  1. 1.
    Grennne TW, Wuts PG (1999) Protective groups in organic synthesis, 3rd edn. Wiley, New York, pp 173–200CrossRefGoogle Scholar
  2. 2.
    Schmidt RR (1986) New methods for the synthesis of glycosides and oligosaccharides-are there alternatives to the Koenigs-Knorr method? [new synthetic methods (56)]. AngewChemInt Ed 25:212–235.  https://doi.org/10.1002/anie.198602121 Google Scholar
  3. 3.
    Lay L, Windmüller R, Reinhardt S, Schmidt RR (1997) A simple access to lactose-derived building blocks required in glycoconjugate synthesis. Carbohydr Res 303:39–49.  https://doi.org/10.1016/S0008-6215(97)00135-3 CrossRefGoogle Scholar
  4. 4.
    Coppa GV, Gabrielli O, Giorgi P, Catassi C, Montanari MP, Varaldo PE, Nichols BL (1990) Preliminary study of breastfeeding and bacterial adhesion to uroepithelial cells. Lancet 335:569–571.  https://doi.org/10.1016/0140-6736(90)90350-E CrossRefGoogle Scholar
  5. 5.
    Cravioto A, Tello A, Villaf H, Ruiz J, VedovoSd Neeser J-R (1991) Inhibition of localized adhesion of enteropathogenic Escherichia coli to HEp-2 cells by immunoglobulin and oligosaccharide fractions of human colostrum and breast milk. J Infect Dis 163:1247–1255CrossRefGoogle Scholar
  6. 6.
    Castoldi S, Cravini M, Micheli F, Piga E, Russo G, Seneci P, Lay L (2004) Solution synthesis of two orthogonally protected lactosides as tetravalent disaccharide-based scaffolds. Eur J Org Chem 2004:2853–2862.  https://doi.org/10.1002/ejoc.200300807 CrossRefGoogle Scholar
  7. 7.
    Mandal PK, Misra AK (2008) Concise synthesis of the pentasaccharide O-antigen of Escherichia coli O83:K24:H31 present in the Colinfant vaccine. Glycoconj J 25:713–722.  https://doi.org/10.1007/s10719-008-9120-1 CrossRefGoogle Scholar
  8. 8.
    Dhénin SGY, Moreau V, Morel N, Nevers M-C, Volland H, Créminon C, Djedaïni-Pilard F (2008) Synthesis of an anthrose derivative and production of polyclonal antibodies for the detection of anthrax spores. Carbohydr Res 343:2101–2110.  https://doi.org/10.1016/j.carres.2007.11.030 CrossRefGoogle Scholar
  9. 9.
    Prasad AK, Kumar V, Maity J, Wang Z, Ravikumar VT, Sanghvi YS, Parmar VS (2005) Benzoyl cyanide: a mild and efficient reagent for benzoylation of nucleosides. Synth Commun 35:935–945.  https://doi.org/10.1081/SCC-200051693 CrossRefGoogle Scholar
  10. 10.
    Prasad AK, Kumar V, Malhotra S, Ravikumar VT, Sanghvi YS, Parmar VS (2005) ‘Green’ methodology for efficient and selective benzoylation of nucleosides using benzoyl cyanide in an ionic liquid. Bioorganic Med Chem 13:4467–4472.  https://doi.org/10.1016/j.bmc.2005.04.038 CrossRefGoogle Scholar
  11. 11.
    Grindley TB (1998) Applications of tin-containing intermediates to carbohydrate chemistry. Adv Carbohydr Chem Biochem 53:17–142.  https://doi.org/10.1002/chin.199922275 CrossRefGoogle Scholar
  12. 12.
    Xu H, Lu Y, Zhou Y, Ren B, Pei Y, Dong H, Pei Z (2014) Regioselective benzylation of diols and polyols by catalytic amounts of an organotin reagent. Adv Synth Catal 356:1735–1740.  https://doi.org/10.1002/adsc.201301152 CrossRefGoogle Scholar
  13. 13.
    Muramatsu W, Takemoto Y (2013) Selectivity switch in the catalytic functionalization of nonprotected carbohydrates: selective synthesis in the presence of anomeric and structurally similar carbohydrates under mild conditions. J Org Chem 78:2336–2345.  https://doi.org/10.1021/jo3024279 CrossRefGoogle Scholar
  14. 14.
    Lee D, Williamson CL, Chan L, Taylor MS (2012) Regioselective, borinic acid-catalyzed monoacylation, sulfonylation and alkylation of diols and carbohydrates: expansion of substrate scope and mechanistic studies. J Am Chem Soc 134:8260–8267.  https://doi.org/10.1021/ja302549c CrossRefGoogle Scholar
  15. 15.
    Zhou Y, Ramström O, Dong H (2012) Organosilicon-mediated regioselective acetylation of carbohydrates. Chem Commun 48:5370–5372.  https://doi.org/10.1039/C2CC31556D CrossRefGoogle Scholar
  16. 16.
    Ren B, Rahm M, Zhang X, Zhou Y, Dong H (2014) Regioselective acetylation of diols and polyols by acetate catalysis: mechanism and application. J Org Chem 79:8134–8142.  https://doi.org/10.1021/jo501343x CrossRefGoogle Scholar
  17. 17.
    Zhang X, Ren B, Ge J, Pei Z, Dong H (2016) A green and convenient method for regioselective mono and multiple benzoylation of diols and polyols. Tetrahedron 72:1005–1010.  https://doi.org/10.1016/j.tet.2015.12.074 CrossRefGoogle Scholar
  18. 18.
    Ren B, Ramström O, Zhang Q, Ge J, Dong H (2016) Corrigendum: an iron(III) catalyst with unusually broad substrate scope in regioselective alkylation of diols and polyols. Chem Eur J 22:7662.  https://doi.org/10.1002/chem.201601886 CrossRefGoogle Scholar
  19. 19.
    Kurahashi T, Mizutani T, J-i Yoshida (2002) Functionalized DMAP catalysts for regioselective acetylation of carbohydrates. Tetrahedron 58:8669–8677.  https://doi.org/10.1016/S0040-4020(02)01098-0 CrossRefGoogle Scholar
  20. 20.
    Kattnig E, Albert M (2004) Counterion-directed regioselective acetylation of octyl β-d-glucopyranoside. Org Lett 6:945–948.  https://doi.org/10.1021/ol0364935 CrossRefGoogle Scholar
  21. 21.
    Zhou Y, Rahm M, Wu B, Zhang X, Ren B, Dong H (2013) H-bonding activation in highly regioselective acetylation of diols. J Org Chem 78:11618–11622.  https://doi.org/10.1021/jo402036u CrossRefGoogle Scholar
  22. 22.
    Pedersen CM, Olsen J, Brka AB, Bols M (2011) Quantifying the electronic effects of carbohydrate hydroxy groups by using aminosugar models. Chem Eur J 17:7080–7086.  https://doi.org/10.1002/chem.201100020 CrossRefGoogle Scholar
  23. 23.
    Peng P, Linseis M, Winter RF, Schmidt RR (2016) Regioselective acylation of diols and triols: the cyanide effect. J Am Chem Soc 138:6002–6009.  https://doi.org/10.1021/jacs.6b02454 CrossRefGoogle Scholar
  24. 24.
    De Oliveira CMA, Porto A, Bittrich V, Vencato I, Marsaioli AJ (1996) Floral resins of Clusia spp.: chemical composition and biological function. Tetrahedron Lett 37:6427–6430.  https://doi.org/10.1016/0040-4039(96)00656-9 CrossRefGoogle Scholar
  25. 25.
    Hussain RA, Owegby AG, Parimoo P, Waterman PG (1982) Kolanone, a Novel Polyisoprenylated Benzophenone with Antimicrobial Properties from the Fruit of Garcinia kola. Planta Med 44:78–81.  https://doi.org/10.1055/s-2007-971406 CrossRefGoogle Scholar
  26. 26.
    Raikar SB, Nuhant P, Delpech B, Marazano C (2008) Synthesis of polyprenylated benzoyl phloroglucinols by regioselective prenylation of phloroglucinol in an aqueous medium. Eur J Org Chem 2008:1358–1369.  https://doi.org/10.1002/ejoc.200701009 CrossRefGoogle Scholar
  27. 27.
    Horeischi F, Guttroff C, Plietker B (2015) Theenantioselective total synthesis of (+)-clusianone. Chem Commun 51:2259–2261.  https://doi.org/10.1039/C4CC09701G CrossRefGoogle Scholar
  28. 28.
    Biber N, Möws K, Plietker B (2011) The total synthesis of hyperpapuanone, hyperibone L, epi-clusianone and oblongifolin A. Nat Chem 3:938.  https://doi.org/10.1038/nchem.1170 CrossRefGoogle Scholar
  29. 29.
    Marvel CS, Brace NO, Miller FA, Johnson AR (1949) Benzoyl cyanide dimer and the addition of benzoyl cyanide to aromatic aldehydes. J Am Chem Soc 71:34–36.  https://doi.org/10.1021/ja01169a011 CrossRefGoogle Scholar
  30. 30.
    Scholl M, Lim C-K, Fu GC (1995) Convenient and efficient conversion of aldehydes to acylated cyanohydrins using tributyltin cyanide as catalyst. J Org Chem 60:6229–6231.  https://doi.org/10.1021/jo00124a052 CrossRefGoogle Scholar
  31. 31.
    Tian J, Yamagiwa N, Matsunaga S, Shibasaki M (2002) An asymmetric cyanation reaction and sequential asymmetric cyanation-nitroaldol reaction using a [YLi3{tris(binaphthoxide)}] single catalyst component: catalyst tuning with achiral additives. Angew Chem Int Ed 41:3636–3638.  https://doi.org/10.1002/1521-3773(20021004)41:19<3636::AID-ANIE3636>3.0.CO;2-B CrossRefGoogle Scholar
  32. 32.
    Pan SC, Zhou J, List B (2006) Catalytic acylcyanation of imines with acetylcyanide. Synlett 19:3275–3276.  https://doi.org/10.1055/s-2006-951543 Google Scholar
  33. 33.
    Pan SC, List B (2007) Catalytic one-pot, three-component acyl-strecker reaction. Synlett 2:318–320.  https://doi.org/10.1055/s-2007-968008 Google Scholar
  34. 34.
    Pan SC, List B (2007) Catalytic asymmetric three-component acyl-strecker reaction. Org Lett 9:1149–1151.  https://doi.org/10.1021/ol0702674 CrossRefGoogle Scholar
  35. 35.
    Murayama H, Nagao K, Ohmiya H, Sawamura M (2016) Phosphine-catalyzed vicinal acylcyanation of alkynoates. Org Lett 18:1706–1709.  https://doi.org/10.1021/acs.orglett.6b00677 CrossRefGoogle Scholar
  36. 36.
    Opatz T (2009) The chemistry of deprotonated α-aminonitriles. Synthesis 12:1941–1959.  https://doi.org/10.1055/s-0029-1216839 CrossRefGoogle Scholar
  37. 37.
    Otto N, Opatz T (2014) Heterocycles from α-aminonitriles. Chem Eur J 20:13064–13077.  https://doi.org/10.1002/chem.201403956 CrossRefGoogle Scholar
  38. 38.
    Enders D, Shilvock JP (2000) Some recent applications of α-amino nitrile chemistry. Chem Soc Rev 29:359–373.  https://doi.org/10.1039/A908290E CrossRefGoogle Scholar
  39. 39.
    Hayashi Y, Shoji M, Yamaguchi S, Mukaiyama T, Yamaguchi J, Kakeya H, Osada H (2003) Asymmetric total synthesis of pseurotin A. Org Lett 5:2287–2290.  https://doi.org/10.1021/ol034630s CrossRefGoogle Scholar
  40. 40.
    Yamaguchi J, Kakeya H, Uno T, Shoji M, Osada H, Hayashi Y (2005) Determination by asymmetric total synthesis of the absolute configuration of lucilactaene, a cell-cycle inhibitor in p53-transfected cancer cells. Angew Chem Int Ed 44:3110–3115.  https://doi.org/10.1002/anie.200500060 CrossRefGoogle Scholar
  41. 41.
    Le Vézouët R, White AJP, Burrows JN, Barrett AGM (2006) Synthetic studies on the CDEF ring system of lactonamycin. Tetrahedron 62:12252–12263.  https://doi.org/10.1016/j.tet.2006.10.004 CrossRefGoogle Scholar
  42. 42.
    Grunwald C, Rundfeldt C, Lankau H-J, Arnold T, Höfgen N, Dost R, Egerland U, Hofmann H-J, Unverferth K (2006) Synthesis, pharmacology, and structure–activity relationships of novel imidazolones and pyrrolones as modulators of GABAA receptors. J Med Chem 49:1855–1866.  https://doi.org/10.1021/jm0509400 CrossRefGoogle Scholar
  43. 43.
    Gu Z, Zakarian A (2010) Concise total synthesis of sintokamides A, B, and E by a unified, protecting-group-free strategy. Angew Chem Int Ed 49:9702–9705.  https://doi.org/10.1002/anie.201005354 CrossRefGoogle Scholar
  44. 44.
    Husain A, Alam MM, Shaharyar M, Lal S (2010) Antimicrobial activities of some synthetic butenolides and their pyrrolone derivatives. J Enzyme Inhib Med Chem 25:54–61.  https://doi.org/10.3109/14756360902940860 CrossRefGoogle Scholar
  45. 45.
    Hashem AI, Youssef ASA, Kandeel KA, Abou-Elmagd WSI (2007) Conversion of some 2(3H)-furanones bearing a pyrazolyl group into other heterocyclic systems with a study of their antiviral activity. Eur J Med Chem 42:934–939.  https://doi.org/10.1016/j.ejmech.2006.12.032 CrossRefGoogle Scholar
  46. 46.
    Nobuyuki O, Toshihiro N, Akira T, Shigehiko T, Yasunori O (1994) U.S. Patent 5 312 929Google Scholar
  47. 47.
    Howard EG, Lindsey RV, Theobald CW (1959) Synthesis of 3-substituted 5-hydroxy-3-pyrrolin-2-ones. J Am Chem Soc 81:4355–4358.  https://doi.org/10.1021/ja01525a063 CrossRefGoogle Scholar
  48. 48.
    Gilbert JC, Blackburn BK (1986) Reactions of alkylidenecarbenes derived from N, N-disubstituted-2-oxopropanamides: the formation of 3-pyrrol-2-ones and 2-butyn-amides. J Org Chem 51:3656–3663.  https://doi.org/10.1021/jo00369a019 CrossRefGoogle Scholar
  49. 49.
    Gilbert JC, Blackburn BK (1986) Novel preparation of cyclohepta[b]pyrrol-2-ones. J Org Chem 51:4087–4089.  https://doi.org/10.1021/jo00371a040 CrossRefGoogle Scholar
  50. 50.
    Imhof W, Berger D, Kötteritzsch M, Rost M, Schönecker B (2001) The stereoselective Ru3(CO)12-catalyzed synthesis of steroidal 1,3-dihydropyrrol-2-one derivatives from α, β-unsaturated imines, carbon monoxide and ethylene. Adv Synth Catal 343:795–801.  https://doi.org/10.1002/1615-4169(20011231)343:8<795::AID-ADSC795>3.0.CO;2-M CrossRefGoogle Scholar
  51. 51.
    Berger D, Imhof W (2000) Ruthenium catalyzed one-pot synthesis of dihydro-pyrrol-2-one derivatives from α, β-unsaturated Imines, carbon monoxide and ethylene. Tetrahedron 56:2015–2023.  https://doi.org/10.1016/S0040-4020(00)00118-6 CrossRefGoogle Scholar
  52. 52.
    Klumpp DA, Zhang Y, O’Connor MJ, Esteves PM, de Almeida LS (2007) Aza-Nazarov reaction and the role of superelectrophiles. Org Lett 9:3085–3088.  https://doi.org/10.1021/ol0711570 CrossRefGoogle Scholar
  53. 53.
    Hill L, Hunter GA, Imam SH, McNab H, O’Neill WJ (2009) 3-Hydroxy-1H-pyrrole. Synthesis 15:2535–2538.  https://doi.org/10.1055/s-0029-1217422 Google Scholar
  54. 54.
    Xiong M, Yu S, Xie X, Li S, Liu Y (2015) Reactions of zirconocene–1-Aza-1,3-diene complexes with acyl cyanides: substrate-dependent synthesis of acyl- or non-acyl-substituted pyrroles. Organometallics 34:5597–5601.  https://doi.org/10.1021/acs.organomet.5b00801 CrossRefGoogle Scholar
  55. 55.
    Hirata Y, Yada A, Morita E, Nakao Y, Hiyama T, Ohashi M, Ogoshi S (2010) Nickel/Lewis acid-catalyzed cyanoesterification and cyanocarbamoylation of alkynes. J Am Chem Soc 132:10070–10077.  https://doi.org/10.1021/ja102346v CrossRefGoogle Scholar
  56. 56.
    Mekie MC, Paton RM (2002) Nitrile sulfides. Part 13. Synthesis of 5-acyl-1,2,4-thiadiazoles by cycloaddition of nitrile sulfides to acylcyanides. Arkiroc 6:15–21Google Scholar
  57. 57.
    Yu Y, Watanabe N, Ohno M, Eguchi S (1995) Synthesis of novel carbo- and heteropolycycles. Part 30. 1,3-Dipolar cycloaddition of nitrile functions with some selected nitrones. Efficient synthesis of 2,3-dihydro-1,2,4-oxadiazole derivatives. J Chem Soc Perkin Trans 1:1417–1421.  https://doi.org/10.1039/P19950001417 CrossRefGoogle Scholar
  58. 58.
    Luthman K, Borg S, Hacksell U (1999) Synthesis and use of pseudopeptides derived from 1,2,4-oxadiazole-, 1,3,4-oxadiazole-, and 1,2,4-triazole-based dipeptidomimetics. Methods Mol Med 23:1–23.  https://doi.org/10.1385/0-89603-517-4:1 Google Scholar
  59. 59.
    Borg S, Vollinga RC, Labarre M, Payza K, Terenius L, Luthman K (1999) Design, synthesis, and evaluation of Phe-Gly mimetics: heterocyclic building blocks for pseudopeptides. J Med Chem 42:4331–4342.  https://doi.org/10.1021/jm990197+ CrossRefGoogle Scholar
  60. 60.
    Emmitte KA (2011) Recent advances in the design and development of novel negative allosteric modulators of mGlu5. ACS Chem Neurosci 2:411–432.  https://doi.org/10.1021/cn2000266 CrossRefGoogle Scholar
  61. 61.
    Kandre S, Bhagat PR, Sharma R, Gupte A (2013) Microwave assisted synthesis of 3,5-disubstituted 1,2,4-oxadiazoles from substituted amidoximes and benzoyl cyanides. Tetrahedron Lett 54:3526–3529.  https://doi.org/10.1016/j.tetlet.2013.04.101 CrossRefGoogle Scholar
  62. 62.
    Syroeshkina YS, Kuznetsov VV, Lyssenko KA, Makhova NN (2009) Insertion of carbon disulfide and the nitrile group into the diaziridine ring of 6-aryl-1,5-diazabicyclo[3.1.0]hexanes in ionic liquids catalyzed by BF3 Et2O. Russ Chem Bull 58:366–379.  https://doi.org/10.1007/s11172-010-0018-2 CrossRefGoogle Scholar
  63. 63.
    Martinez-Ariza G, Mehari BT, Pinho LAG, Foley C, Day K, Jewett JC, Hulme C (2017) Synthesis of fluorescent heterocycles via a Knoevenagel/[4 + 1]-cycloaddition cascade using acetyl cyanide. Org Biomol Chem 15:6076–6079.  https://doi.org/10.1039/C7OB01239J CrossRefGoogle Scholar
  64. 64.
    Tietze LF, Modi A (2000) Multicomponent domino reactions for the synthesis of biologically active natural products and drugs. Med Res Rev 20:304–322.  https://doi.org/10.1002/1098-1128(200007)20:4<304::AID-MED3>3.0.CO;2-8 CrossRefGoogle Scholar
  65. 65.
    Touré BB, Hall DG (2009) Natural product synthesis using multicomponent reaction strategies. Chem Rev 109:4439–4486.  https://doi.org/10.1021/cr800296p CrossRefGoogle Scholar
  66. 66.
    Hanson SM, Morlock EV, Satyshur KA, Czajkowski C (2008) Structural requirements for eszopiclone and zolpidem binding to the γ-aminobutyric acid type-A (GABAA) receptor are different. J Med Chem 51:7243–7252.  https://doi.org/10.1021/jm800889m CrossRefGoogle Scholar
  67. 67.
    Ollinger J, Bailey MA, Moraski GC, Casey A, Florio S, Alling T, Miller MJ, Parish T (2013) A dual read-out assay to evaluate the potency of compounds active against Mycobacterium tuberculosis. PLoS ONE 8:e60531.  https://doi.org/10.1371/journal.pone.0060531 CrossRefGoogle Scholar
  68. 68.
    Abdel Hameed AM, Moustafa SM, Al-Mousawi SM, Awed RR, Sadek KU (2017) An efficient and catalyst-free synthesis of N-arylidene-2-arylimidazo[1,2-a]pyridine-3-ylamine derivatives via Strecker reaction under controlled microwave heating. Green Process Synth 6:371–375.  https://doi.org/10.1515/gps-2017-0019 Google Scholar
  69. 69.
    Bencková M, Krutošíková A (1999) 5-Aminofuro[3,2-c]pyridinium tosylates and substituted Furo[3,2-c]pyridine N-Oxides: synthesis and reactions. Collect Czechoslov Chem Commun 64:539–547.  https://doi.org/10.1135/cccc19990539 CrossRefGoogle Scholar
  70. 70.
    Mojumadar SC, Simon P, Krutosikova A (2009) [1]Benzofuro[3,2-c]pyridine synthesis and coordination reactions. J Therm Anal Calorim 96:103–109.  https://doi.org/10.1007/s10973-008-9881-6 CrossRefGoogle Scholar
  71. 71.
    Naiman A, Vollhardt KPC (2003) A cobalt-catalyzed one-step synthesis of annelated pyridines. Angew Chem Int Ed Eng 16:708–709.  https://doi.org/10.1002/anie.197707081 CrossRefGoogle Scholar
  72. 72.
    Zhou Z, PietroBattaglia L, Paolo Chiusoli G, Costa M, Nardelli M, Pelizzi C, Predieri G (1991) Reactivity of cobalt(O) and cobalt(I) complexes with diynes towards C. C, C. N, and C. C bonds. X-Ray structure of a cyclopentadienylcobaltacyclopentadiene complex. J Organomet Chem 417:51–63.  https://doi.org/10.1016/0022-328X(91)80160-L CrossRefGoogle Scholar
  73. 73.
    Yamamoto Y, Okuda S, Itoh K (2001) Ruthenium(ii)-catalyzed [2 + 2 + 2] cycloaddition of 1,6-diynes with electron-deficient nitriles. Chem Commun.  https://doi.org/10.1039/b102588k Google Scholar
  74. 74.
    Swinbourne FJ, Hunt JH, Klinkert G (1979) Advances in indolizine chemistry. Adv Heterocycl Chem 23:103–170.  https://doi.org/10.1016/S0065-2725(08)60842-9 CrossRefGoogle Scholar
  75. 75.
    Rostami-Charati F, Hossaini Z, Gharaee E, Khalilzadeh MA (2013) One-pot three-component synthesis of oxazine derivatives in water. J Heterocycl Chem 50:E174–E177.  https://doi.org/10.1002/jhet.1112 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of ScienceMinia UniversityMiniaEgypt
  2. 2.Chemistry Department, Faculty of ScienceCairo UniversityGizaEgypt

Personalised recommendations