Ciprofloxacin-functionalized magnetic silica nanoparticles: as a reusable catalyst for the synthesis of 1H-chromeno[2,3-d]pyrimidine-5-carboxamides and imidazo[1,2-a]pyridines

  • Ebrahim SoleimaniEmail author
  • Sara Torkaman
  • Heshmatollah Sepahvand
  • Somayeh Ghorbani
Original Article


In this research, synthesis and characterization of new surface-functionalized magnetic silica nanoparticles are reported. The magnetic silica nanoparticle was synthesized by a silica coating of the magnetite nanoparticles through a sol–gel process, and then, their surface was modified by (3-chloropropyl)triethoxysilane and covalently functionalized by ciprofloxacin. The catalyst activity of prepared functionalized nanoparticle was investigated by isocyanide-based multicomponent reactions for the synthesis of 1H-chromeno[2,3-d]pyrimidine-5-carboxamides and imidazo[1,2-a]pyridines. This catalyst was recycled by magnetic filtration and reprocessed five times without having a significant loss of catalytic activity.

Graphical abstract


Magnetite nanocatalyst Ciprofloxacin Isocyanide-based multicomponent reactions 1H-Chromeno[2,3-d]pyrimidine-5-carboxamides Imidazo[1,2-a]pyridines 



We gratefully acknowledge financial support from the Iran National Science Foundation (INSF) and the Research Council of Razi University.

Supplementary material

11030_2018_9907_MOESM1_ESM.docx (5.4 mb)
Supplementary material 1 (DOCX 5515 kb)


  1. 1.
    Iler VRK (1979) The chemistry of silica-solubility, polymerization, colloid and surface properties, and biochemistry. Wiley, ChichesterGoogle Scholar
  2. 2.
    Kim KD, Kim SS, Choa Y-H, Kim HT (2007) Formation and surface modification of Fe3O4 nanoparticles by co-precipitation and sol–gel method. J Ind Eng Chem 13:1137Google Scholar
  3. 3.
    Jafarzadeh M, Soleimani E, Sepahvand H, Adnan R (2015) Synthesis and characterization of fluconazole-functionalized magnetic nanoparticles as a catalyst for the synthesis of 3-aryl and 3-amino-imidazo[1,2-a] pyridines. RSC Adv 5:42744CrossRefGoogle Scholar
  4. 4.
    Wang J, Xu B, Sun H, Song G (2013) Palladium nanoparticles supported on functional ionic liquid modified magnetic nanoparticles as recyclable catalyst for room temperature Suzuki reaction. Tetrahedron Lett 54:238CrossRefGoogle Scholar
  5. 5.
    Li B, Gao L, Bian F, Yu W (2013) A new recoverable Au(III) catalyst supported on magnetic polymer nanocomposite for aromatic bromination. Tetrahedron Lett 54:1063CrossRefGoogle Scholar
  6. 6.
    Yan Z, Yang Z, Xu Z, An L, Xie F, Liu J (2018) Enhanced room-temperature catalytic decomposition of formaldehyde on magnesium–aluminum hydrotalcite/boehmite supported platinum nanoparticles catalyst. J Colloid Interface Sci 524:306CrossRefGoogle Scholar
  7. 7.
    Hui C, Shen C, Tian J, Bao L, Ding H, Li C, Tian Y, Shi X, Gao H-J (2011) Core–shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds. Nanoscale 3:701CrossRefGoogle Scholar
  8. 8.
    Jones CW, Tsuji K, Davis ME (1998) Organic-functionalized molecular sieves as shape-selective catalysts. Nature 393:52CrossRefGoogle Scholar
  9. 9.
    Tedesco AD, Ambrosi E, Borsacchi S, Benedetti A (2017) Functionalization of mesoporous silica nanoparticles with organosilanes: experimental evidence of the interaction between organic groups and silica surface. Curr Org Chem 21:2434CrossRefGoogle Scholar
  10. 10.
    Sharma R, Sharma S, Dutta S, Zboril R, Gawande MB (2015) Silica-nanosphere-based organic–inorganic hybrid nanomaterials: synthesis, functionalization and applications in catalysis. Green Chem 17:3207CrossRefGoogle Scholar
  11. 11.
    Gemeay AH, Aboelfetoh EF, El-Sharkawy RG (2018) Immobilization of green synthesized silver nanoparticles onto amino-functionalized silica and their application for indigo carmine dye removal. Water Air Soil Pollut 229:16CrossRefGoogle Scholar
  12. 12.
    Ridgway GL, Mumtaz G, Gabriel FG, Oriel JD (1986) Ciprofloxacin. Springer, BerlinGoogle Scholar
  13. 13.
    Hooper D, Wolfson J, Ng E, Swartz M (1987) Mechanisms of action of and resistance to ciprofloxacin. Am J Med 82:12PubMedGoogle Scholar
  14. 14.
    Ruijter E, Scheffelaar R, Orru RV (2011) Multicomponent reaction design in the quest for molecular complexity and diversity. Angew Chem Int Ed 50:6234CrossRefGoogle Scholar
  15. 15.
    Ganem B (2009) Strategies for innovation in multicomponent reaction design. Acc Chem Res 42:463CrossRefGoogle Scholar
  16. 16.
    Soleimani E, Zainali M (2011) Isocyanide-based multicomponent reactions: synthesis of alkyl-2-(1-(alkylcarbamoyl)-2,2-dicyanoethyl) benzoate and isochromeno[3,4-b]pyrrole derivatives. J Org Chem 76:10306CrossRefGoogle Scholar
  17. 17.
    Dömling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106:17CrossRefGoogle Scholar
  18. 18.
    Akritopoulou-Zanze I (2008) Isocyanide-based multicomponent reactions in drug discovery. Curr Opin Chem Biol 12:324CrossRefGoogle Scholar
  19. 19.
    Su C-R, Yeh SF, Liu CM et al (2009) Anti-HBV and cytotoxic activities of pyranocoumarin derivatives. Bioorg Med Chem 17:6137CrossRefGoogle Scholar
  20. 20.
    Karnik A, Kulkarni A, Malviya N, Mourya B, Jadhav B (2008) Synthesis and in vitro anti-bacterial evaluation of tetracyclic-ortho-fused 4H-naphtho[1′,2′–5,6] pyrano[3,4-d](1,2,3) selenadiazole and its derivatives. Eur J Med Chem 43:2615CrossRefGoogle Scholar
  21. 21.
    Kwak J-H, Kang H-E, Jung J-K, Kim H, Cho J, Lee H (2006) Synthesis of 7-hydroxy-4-oxo-4H-chromene-and 7-hydroxychroman-2-carboxylic acid N-alkyl amides and their antioxidant activities. Arch Pharmacal Res 29:728CrossRefGoogle Scholar
  22. 22.
    Chabchoub F, Messaâd M, Mansour HB, Chekir-Ghedira L, Salem M (2007) Synthesis and antigenotoxic activity of some naphtho[2,1-b] pyrano[3,2-e][1,2,4] triazolo[1,5-c]pyrimidine derivatives. Eur J Med Chem 42:715CrossRefGoogle Scholar
  23. 23.
    Deshmukh M, Salunkhe S, Patil D, Anbhule P (2009) A novel and efficient one step synthesis of 2-amino-5-cyano-6-hydroxy-4-aryl pyrimidines and their anti-bacterial activity. Eur J Med Chem 44:2651CrossRefGoogle Scholar
  24. 24.
    Gasse C, Douguet D, Huteau V, Marchal G, Munier-Lehmann H, Pochet S (2008) Substituted benzyl-pyrimidines targeting thymidine monophosphate kinase of mycobacterium tuberculosis: synthesis and in vitro anti-mycobacterial activity. Bioorg Med Chem 16:6075CrossRefGoogle Scholar
  25. 25.
    Falcao EPDS, de Melo SJ, Srivastava RM, Catanho MTJDA, Do Nascimento SC (2006) Synthesis and antiinflammatory activity of 4-amino-2-aryl-5-cyano-6-{3-and 4-(N-phthalimidophenyl)} pyrimidines1. Eur J Med Chem 41:276CrossRefGoogle Scholar
  26. 26.
    Karimi N, Davoodnia A, Pordel M (2018) Synthesis of new 3H-chromeno[2,3-d] pyrimidine-4,6 (5H, 7H)-diones via the tandem intramolecular Pinner/Dimroth rearrangement. Heterocycl Commun 24:31CrossRefGoogle Scholar
  27. 27.
    Beheshti S, Safarifard V, Morsali A (2018) Isoreticular interpenetrated pillared-layer microporous metal-organic framework as a highly effective catalyst for three-component synthesis of pyrano[2,3-d] pyrimidines. Inorg Chem Commun 94:80CrossRefGoogle Scholar
  28. 28.
    Borisov AV, Dzhavakhishvili SG, Zhuravel IO, Kovalenko SM, Nikitchenko VM (2007) Parallel liquid-phase synthesis of benzopyrano[2,3-d] pyrimidine libraries. J Comb Chem 9:5CrossRefGoogle Scholar
  29. 29.
    Kabeer SA, Reddy GR, Sreelakshmi P, Manidhar DM, Reddy CS (2017) TiO2–SiO2 catalyzed eco-friendly synthesis and antioxidant activity of benzopyrano[2,3-d] pyrimidine derivatives. J Heterocycl Chem 54:2598CrossRefGoogle Scholar
  30. 30.
    Rahman IA, Padavettan V (2012) Synthesis of silica nanoparticles by sol–gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review. J Nanomater 2012:8CrossRefGoogle Scholar
  31. 31.
    Soleimani E, Naderi Namivandi M, Sepahvand H (2017) ZnCl2 supported on Fe3O4@SiO2 core–shell nanocatalyst for the synthesis of quinolines via Friedländer synthesis under solvent-free condition. Appl Organomet Chem 31:3566CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ebrahim Soleimani
    • 1
    Email author
  • Sara Torkaman
    • 1
  • Heshmatollah Sepahvand
    • 1
  • Somayeh Ghorbani
    • 1
  1. 1.Department of ChemistryRazi UniversityKermanshahIran

Personalised recommendations