Advertisement

A highly efficient precatalytic system (XPhos-PdG2) for the Suzuki–Miyaura cross-coupling of 7-chloro-1H-pyrrolo[2,3-c]pyridine employing low catalyst loading

  • Bhaskaran Savitha
  • Eeda Koti Reddy
  • D. Parthasarathi
  • Rajeesh Pakkath
  • Ranjith Pakkath Karuvalam
  • C. S. Ananda Kumar
  • K. R. Haridas
  • M. Syed Ali PadushaEmail author
  • Ayyiliath M. SajithEmail author
Original Article
  • 16 Downloads

Abstract

An expedient catalytic method for the synthesis of diverse 7-(hetero) aryl-1H-pyrrolo[2,3-c]pyridine analogues via microwave-assisted Suzuki–Miyaura cross-coupling reaction with excellent yield was developed. The method is found to be compatible with various boronic acids and potassium organotrifluoroborates. The formation of highly stable monoligated catalytic species is found to be instrumental in driving the reactions to excellent conversions in Suzuki–Miyaura coupling. Herein, we report our findings on the use of a highly efficient precatalytic system (XPhos-PdG2), containing a bulky monodentate biaryl ligand which allows the rapid reductive elimination to form the true monoligated Pd(0) catalytic species, thereby facilitating the Suzuki coupling reaction of 7-chloro, 6-azaindole system containing unprotected free N–H group with excellent conversions employing low catalyst loadings. Also, we observed that the use of near stoichiometric potassium organotrifluoroborate reagents as alternative coupling partners for boronic acids, which are prone to protodeboronation, resulted in excellent conversions.

Graphical abstract

Keywords

7-chloro-1H-pyrrolo[2,3-c]pyridine XPhos-PdG2 Suzuki–Miyaura cross-coupling 

Supplementary material

11030_2018_9904_MOESM1_ESM.pdf (9.7 mb)
Supplementary material 1 (PDF 9963 kb)

References

  1. 1.
    Sajith AM, Abdul Khader KK, Joshi N, Nageswar Reddy M, Syed Ali Padusha M, Nagaswarupa HP, Nibin Joy M, Bodke YD, Karuvalam RP, Banerjee R, Muralidharan A, Rajendra P (2015) Design, synthesis and structure–activity relationship (SAR) studies of imidazo[4,5-b]pyridine derived purine isosteres and their potential as cytotoxic agents. Eur J Med Chem 89:21.  https://doi.org/10.1016/j.ejmech.2014.10.037 CrossRefPubMedGoogle Scholar
  2. 2.
    Reddy EK, Remya C, Sajith AM, Dileep KV, Sadasivan C, Anwar S (2016) Functionalised dihydroazo pyrimidine derivatives from Morita–Baylis–Hillman acetates: synthesis and studies against acetylcholinesterase as its inhibitors. RSC Adv 6:77431.  https://doi.org/10.1039/c6ra12507g CrossRefGoogle Scholar
  3. 3.
    Reddy EK, Remya C, Mantosh K, Sajith AM, Omkumar RV, Sadasivan C, Anwar S (2017) Novel tacrine derivatives exhibiting improved acetylcholinesterase inhibition: design, synthesis and biological evaluation. Eur J Med Chem 139:367–377.  https://doi.org/10.1016/j.ejmech.2017.08.013 CrossRefPubMedGoogle Scholar
  4. 4.
    Mérour Jean-Yves, Buron Frédéric, Plé Karen, Bonnet Pascal, Routier Sylvain (2014) The azaindole framework in the design of kinase inhibitors. Molecules 19:19935–19979.  https://doi.org/10.3390/molecules191219935 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gummadi VR, Rajagopalan S, Looi C-Y, Paydar M, Renukappa GA, Ainan BR, Krishnamurthy NR, Panigrahi SK, Mahasweta K, Raghuramachandran S (2013) Discovery of 7-azaindole based anaplastic lymphoma kinase (ALK) inhibitors: wild type and mutant (L1196M) active compounds with unique binding mode. Bioorg Med Chem Lett 23:4911–4918.  https://doi.org/10.1016/j.bmcl.2013.06.071 CrossRefPubMedGoogle Scholar
  6. 6.
    Pollard JR, Mortimore M (2009) Discovery and development of aurora kinase inhibitors as anticancer agents. J Med Chem 52:2629–2651.  https://doi.org/10.1021/jm8012129 CrossRefPubMedGoogle Scholar
  7. 7.
    Bouloc N, Large JM, Kosmopoulou M, Sun C, Faisal A, Matteucci M, Reynisson J, Brown N, Atrash B, Blagg J (2010) Structure-based design of imidazo[1,2-a]pyrazine derivatives as selective inhibitors of Aurora-A kinase in cells. Bioorg Med Chem Lett 20:5988–5993.  https://doi.org/10.1016/j.bmcl.2010.08.091 CrossRefPubMedGoogle Scholar
  8. 8.
    Harrington PE, Bourbeau MP, Fotsch C, Frohn M, Pickrell AJ, Reichelt A, Sham K, Siegmund AC, Bailis JM, Bush T (2013) The optimization of aminooxadiazoles as orally active inhibitors of Cdc7. Bioorg Med Chem Lett 23:6396–6400.  https://doi.org/10.1016/j.bmcl.2013.09.055 CrossRefPubMedGoogle Scholar
  9. 9.
    Williams DK, Chen X-T, Tarby C, Kaltenbach R, Cai Z-W, Tokarski JS, An Y, Sack JS, Wautlet B, Gullo-Brown J (2010) Design, synthesis and structure–activity relationships of novel biarylamine-based Met kinase inhibitors. Bioorg Med Chem Lett 20:2998–3002.  https://doi.org/10.1016/j.bmcl.2010.01.042 CrossRefPubMedGoogle Scholar
  10. 10.
    Kim KS, Zhang L, Schmidt R, Cai Z-W, Wei D, Williams DK, Lombardo LJ, Trainor GL, Xie D, Zhang Y (2008) Discovery of pyrrolopyridine–pyridone based inhibitors of Met kinase: synthesis, X-ray crystallographic analysis, and biological activities. J Med Chem 51:5330–5341.  https://doi.org/10.1021/jm800476q CrossRefPubMedGoogle Scholar
  11. 11.
    Pires MJD, Poeira DL, Purificacao SI, Marques MM (2016) Synthesis of substituted 4-, 5-, 6-, and 7-azaindoles from aminopyridines via a cascade C–N cross-coupling/heck reaction. Org Lett 18(13):3250–3253.  https://doi.org/10.1021/acs.orglett.6b01500 CrossRefPubMedGoogle Scholar
  12. 12.
    Jean-Yves M, Benoît J (2001) Synthesis and reactivity of 7-azaindoles (1H-pyrrolo(2,3-b)pyridine). Curr Org Chem 5:471–506.  https://doi.org/10.2174/1385272013375427 CrossRefGoogle Scholar
  13. 13.
    Florence P, Jean-Yves M, Benoıt J (2007) Synthesis and reactivity of 4-, 5- and 6-azaindoles. Tetrahedron 63:8689–8707.  https://doi.org/10.1016/j.tet.2007.05.078 CrossRefGoogle Scholar
  14. 14.
    Henderson JL, McDermott SM, Buchwald SL (2010) Palladium-catalyzed amination of unprotected halo-7-azaindoles. Org Lett 12(20):4438–4441.  https://doi.org/10.1021/ol101928m CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gaozhi C, Zhiguo L, Yali Z, Xiaoou S, Lili J, Yunjie Z, Wenfei H, Zhiguo F, Shulin Y, Guang L (2013) Synthesis and anti-inflammatory evaluation of novel benzimidazole and imidazopyridine derivatives. ACS Med Chem Lett 4(1):69–74.  https://doi.org/10.1021/ml300282t CrossRefGoogle Scholar
  16. 16.
    Takeuchi K, Bastian JA, Gifford-Moore DS, Harper RW, Miller SC, Mullaney JT, Sall DJ, Smith GF, Zhang M, Fisher MJ (2000) 1,2-Disubstituted indole, azaindole and benzimidazole derivatives possessing amine moiety: a novel series of thrombin inhibitors. Bioorg Med Chem Lett 10(20):2347–2351.  https://doi.org/10.1016/S0960-894X(00)00454-6 CrossRefPubMedGoogle Scholar
  17. 17.
    Wang T, Ledeboer MW, Duffy JP, Salituro FG, Pierce AC, Zuccola HJ, Block E, Shlyakter D, Hogan JK, Bennani YL (2010) A novel chemotype of kinase inhibitors: discovery of 3,4-ring fused 7-azaindoles and deazapurines as potent JAK2 inhibitors. Bioorg Med Chem Lett 20(1):153–156.  https://doi.org/10.1016/j.bmcl.2009.11.021 CrossRefPubMedGoogle Scholar
  18. 18.
    Alexander Düfert M, Kelvin Billingsley L, Stephen Buchwald L (2013) Suzuki–Miyaura cross-coupling of unprotected, nitrogen-rich heterocycles: substrate scope and mechanistic investigation. J Am Chem Soc 135(34):12877–12885.  https://doi.org/10.1021/ja4064469 CrossRefPubMedGoogle Scholar
  19. 19.
    Sajith AM, Muralidharan A (2012) Exploration of copper and amine-free Sonogashira cross coupling reactions of 2-halo-3-alkyl imidazo[4,5-b]pyridines using tetrabutyl ammonium acetate as an activator under microwave enhanced conditions. Tetrahedron Lett 53:5206–5210.  https://doi.org/10.1016/j.tetlet.2012.07.028 CrossRefGoogle Scholar
  20. 20.
    Sajith AM, Muralidharan A (2012) Microwave enhanced Suzuki coupling: a diversity-oriented approach to the synthesis of highly functionalised 3-substituted-2-aryl/heteroaryl imidazo[4,5-b]pyridines. Tetrahedron Lett 53:1036–1041.  https://doi.org/10.1016/j.tetlet.2011.12.051 CrossRefGoogle Scholar
  21. 21.
    Sajith AM, Muralidharan A, Ranjith PK, Haridas K (2013) Cross-coupling reaction of 2-halo1-methyl-1H-imidazo[4,5-b]pyridine offers a new synthetic route to mutagenic heterocyclic amine-PHIP and DMIP. J Korean Chem Soc 57:3.  https://doi.org/10.5012/jkcs.2013.57.3.361 CrossRefGoogle Scholar
  22. 22.
    Ranjith PK, Haridas K, Sajith AM, Muralidharan A (2013) A facile access to substituted indoles utilizing palladium catalyzed annulation under microwave enhanced conditions. Tetrahedron Lett 54(5126–512):9.  https://doi.org/10.1016/j.tetlet.2013.07.073 CrossRefGoogle Scholar
  23. 23.
    Nibin Joy M, Yadav Bodke D, Abdul Khader KK, Syed Ali Padusha M, Sajith AM (2014) A rapid and modified approach for C-7 amination and amidation of 4-methyl-7-nonafluorobutylsulfonyloxy coumarins under microwave irradiation. RSC Adv 4:19766–19777.  https://doi.org/10.1039/c4ra01720j CrossRefGoogle Scholar
  24. 24.
    Nibin Joy M, Yadav Bodke D, Abdul Khader KK, Sajith AM, Venkatesh T, Ajeesh Kumar AK (2016) Simultaneous exploration of TBAF·3H2O as a base as well as a solvating agent for the palladium catalyzed Suzuki cross-coupling of 4-methyl-7-nonafluorobutylsulfonyloxy coumarins under microwave irradiation. J Fluor Chem 182:109–120.  https://doi.org/10.1016/j.jfluchem.2016.01.002 CrossRefGoogle Scholar
  25. 25.
    Nagaraja RG, Reddy EK, Sajith AM, Shivaraj Y, Chandrashekar KB (2017) NMI/MsCl-mediated amide bond formation of aminopyrazines and aryl/heteroaryl carboxylic acids: synthesis of biologically relevant pyrazine carboxamides. ChemistrySelect 2:7706.  https://doi.org/10.1002/slct.201700801 CrossRefGoogle Scholar
  26. 26.
    Abdul Khader KK, Sajith AM, Padusha MSA, Nagaswarupa HP, Muralidharan A (2014) Cycloalkenyl nonaflates as electrophilic cross-coupling substrates for palladium catalyzed C–N bond forming reactions with enolizable heterocycles under microwave enhanced conditions. New J Chem 38:1294–1305.  https://doi.org/10.1039/c3nj01355c CrossRefGoogle Scholar
  27. 27.
    Nibin Joy M, Yadav Bodke D, Abdul Khader KK, Syed Ali Padusha M, Sajith AM (2014) A rapid approach for the copper, amine, and ligand-free Sonogashira coupling of 4-methyl-7-nonafluorobutylsulfonyloxy coumarins under microwave irradiation. Tetrahedron Lett 55:2355–2361.  https://doi.org/10.1016/j.tetlet.2014.02.094 CrossRefGoogle Scholar
  28. 28.
    Jin X, Guofeng Z, Lianghua Z, Yunyun L (2018) Direct synthesis of methylene-bridged bis-biaryl carboxylates via cascade Suzuki coupling and CH2Cl2-based bis-esterification. ChemistrySelect 3:8291–8293.  https://doi.org/10.1002/slct.201801480 CrossRefGoogle Scholar
  29. 29.
    Xuwen C, Changfeng H, Jie-Ping W, Yunyun L (2016) Dichloromethane as methylene donor for the one-pot synthesis of bisaryloxy methanes via Williamson etherification and Suzuki coupling. Tetrahedron Lett 57:5116–5119.  https://doi.org/10.1016/j.tetlet.2016.10.023 CrossRefGoogle Scholar
  30. 30.
    Manolikakes G, Hernandez CM, Schade MA, Metzger A, Knochel P (2008) Palladium- and nickel-catalyzed cross-couplings of unsaturated halides bearing relatively acidic protons with organozinc reagents. J Org Chem 73:8422–8436.  https://doi.org/10.1021/jo8015852 CrossRefPubMedGoogle Scholar
  31. 31.
    Manolikakes G, Schade MA, Hernandez CM, Mayr H, Knochel P (2008) Negishi cross-couplings of unsaturated halides bearing relatively acidic hydrogen atoms with organozinc reagents. Org Lett 10:2765–2768.  https://doi.org/10.1021/ol8009013 CrossRefPubMedGoogle Scholar
  32. 32.
    Manolikakes G, Dong Z, Mayr H, Li J, Knochel P (2009) Negishi cross-couplings compatible with unprotected amide functions. Chem Eur J 15:1324–1328.  https://doi.org/10.1002/chem.200802349 CrossRefPubMedGoogle Scholar
  33. 33.
    Yang Y, Oldenhuis NJ, Buchwald SL (2013) Mild and general conditions for Negishi cross-coupling enabled by the use of palladacycle precatalysts. Angew Chem Int Ed 52:615–619.  https://doi.org/10.1002/anie.201207750 CrossRefGoogle Scholar
  34. 34.
    Hooper A, Zambona A, Springer CJ (2016) A novel protocol for the one-pot borylation/Suzuki reaction provides easy access to hinge-binding groups for kinase inhibitors. Org Biomol Chem 14(3):963–969.  https://doi.org/10.1039/C5OB01915J CrossRefPubMedGoogle Scholar
  35. 35.
    Hwangseo P, Soyoung L, Suhyun L, Sungwoo H (2014) Structure-based de novo design and identification of D816V mutant-selective c-KIT inhibitors. Org Biomol Chem 12(26):4644–4655.  https://doi.org/10.1039/C4OB00053F CrossRefGoogle Scholar
  36. 36.
    Sera M, Mizufune H, Ueda T, Mineno M, Zanka A (2017) Integrated Pd-catalyzed cross-coupling strategies for furnishing α-carbolines. Tetrahedron 73:5946–5958.  https://doi.org/10.1016/j.tet.2017.08.042 CrossRefGoogle Scholar
  37. 37.
    Buck JR, Saleh S, Uddin MI, Manning HC (2012) Rapid, microwave-assisted organic synthesis of selective (V600E)BRAF inhibitors for preclinical cancer research. Tetrahedron Lett 53:4161–4165.  https://doi.org/10.1016/j.tetlet.2012.05.137 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ya-Ling Z, Zhen-Yu W, Yin-Mao F, You-Gui L, Kantchev EAB (2017) Solvent and base in one: tetra-n-butylammonium acetate as a multi-purpose ionic liquid medium for Ru-catalyzed directed mono- and di-o-C–H arylation reactions. Eur J Org Chem 42:6274–6282.  https://doi.org/10.1002/ejoc.201701022 CrossRefGoogle Scholar
  39. 39.
    Savitha B, Reddy EK, Parthasarathi D, Rajeesh P, Sajith AM, Ananda Kumar CS, Haridas KR, Syed Ali Padusha M (2018) A highly efficient catalyst for the Suzuki–Miyaura cross-coupling reaction of 5-(5-chloropyridin-3-yl)-3-methyl-1,3,4-oxadiazol-2(3H)-one. J Heterocycl Chem 55(10):2277–2283.  https://doi.org/10.1002/jhet.3280 CrossRefGoogle Scholar
  40. 40.
    Bulfield D, Huber SM (2017) Synthesis of polyflourinated biphenyls; pushing the boundaries of Suzuki–Miyaura cross coupling with electron-poor substrates. J Org Chem 82(24):13188–13203.  https://doi.org/10.1021/acs.joc.7b02267 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Molander GA, Trice SLJ, Kennedy SM (2012) Scope of the two-step, one-pot palladium-catalyzed borylation/Suzuki cross-coupling reaction utilizing bis-boronic acid. J Org Chem 77:8678.  https://doi.org/10.1021/jo301642v CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Bruneau A, Roche M, Alami M, Messaoudi S (2015) 2-aminobiphenyl palladacycles: the “most powerful” precatalysts in C–C and C–heteroatom cross-couplings. ACS Catal 5:1386–1396.  https://doi.org/10.1021/cs502011x CrossRefGoogle Scholar
  43. 43.
    Avinesh P, Jaison TJ, Sajith AM, Nagaswarupa HP, Muralidharan A (2016) Facile synthesis of fully decorated imidazo[4,5-b] and imidazo[4,5-c] pyridines in aqueous DMF via C–H activation under microwave irradiation. ChemistrySelect 1:2265–2270.  https://doi.org/10.1002/slct.201600374 CrossRefGoogle Scholar
  44. 44.
    Xuwen C, Yunyun L (2018) Microwave-assisted decarbonylative coupling reaction of o-halobenzamides for phenanthridinone synthesis. ChemistrySelect 3:7763–7765.  https://doi.org/10.1002/slct.201801441 CrossRefGoogle Scholar
  45. 45.
    Fontana M, Caseri W, Smith P (2006) Electro-spun, semiconducting, oriented fibres of supramolecular quasi-linear platinum compounds. Platin Met Rev 50(2):110.  https://doi.org/10.1595/147106706x128412 CrossRefGoogle Scholar
  46. 46.
    Savitha B, Sajith AM, Reddy EK, Ananda Kumar CS, Ali Padusha MS (2016) Suzuki–Miyaura cross-coupling reaction in water: facile synthesis of (hetero) aryl uracil bases using potassiumorganotrifluoroborates under microwave irradiation. ChemistrySelect 1:4721–4725.  https://doi.org/10.1002/slct.201600943 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Postgraduate and Research Department of Chemistry, Jamal Mohamed CollegeBharathidasan UniversityTiruchirappalliIndia
  2. 2.Department of ChemistryVignan’s Foundation for Science, Technology and Research –VFSTR (Deemed to be University)Vadlamudi, GunturIndia
  3. 3.School of Chemical SciencesKannur UniversityKannurIndia
  4. 4.Postgraduate and Research Department of Chemistry, Kasaragod Government CollegeKannur UniversityKasaragodIndia
  5. 5.Visvesvaraya Technological University, CPGSMuddenahalliIndia
  6. 6.Centre for Material ScienceUniversity of MysoreMysoreIndia

Personalised recommendations