Advertisement

1,1-Diaryl compounds as important bioactive module in pesticides

  • Xuelian Liu
  • Yumei Xiao
  • Jia-Qi Li
  • Bin Fu
  • Zhaohai Qin
Short Review
  • 3 Downloads

Abstract

1,1-Diaryl compounds are a series of compounds which possess two aryl groups attached to a central carbon atom. This special structure made it as a very important module in bioactive molecules, and compounds of this type are numerous. 1,1-Diaryl derivatives can be used as catalysts in chemical synthesis, chemical probes and biologically active molecules for medicines and pesticides. In this review, we focus on the application of these compounds in pesticides, such as insecticides and fungicides.

Graphical abstract

The generic structure of the 1,1-diaryl compounds is discussed in this review.

Keywords

1,1-Diaryl compounds Bioactive module Pesticides 

Notes

Acknowledgements

This work was supported by the National Key Research and Development Project of China (No. 2018YFD0200103) and National Natural Science Foundation of China (Grant No. 21572265).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Aphaiwong A, Moloney MG, Christlieb M (2012) Surface functional polymer library by post-polymerisation modification using diarylmethylenes: metal ligand catch and release. J Mater Chem 22(47):24627–24636.  https://doi.org/10.1039/c2jm34942f CrossRefGoogle Scholar
  2. 2.
    Wu F, Lee LTL, Liu J, Zhao S, Chen T, Wang M, Zhong C, Zhu L (2015) Novel organic dyes based on diarylmethylene-bridged triphenylamine for dye-sensitized solar cells. Synth Met 205:70–77.  https://doi.org/10.1016/j.synthmet.2015.03.033 CrossRefGoogle Scholar
  3. 3.
    Zhang N, Chen H, Fan Y, Zhou L, Trepout S, Guo J, Li M-H (2018) Fluorescent Polymersomes with Aggregation-Induced Emission. ACS Nano 12(4):4025–4035.  https://doi.org/10.1021/acsnano.8b01755 CrossRefGoogle Scholar
  4. 4.
    Ameen D, Snape TJ (2013) Chiral 1,1-diaryl compounds as important pharmacophores. MedChemComm 4(6):893–907.  https://doi.org/10.1039/c3md00088e CrossRefGoogle Scholar
  5. 5.
    Yamamoto I (1970) Mode of action of pyrethroids, nicotinoids, and rotenoids. Annu Rev Entomol 15:257–272.  https://doi.org/10.1146/annurev.en.15.010170.001353 CrossRefGoogle Scholar
  6. 6.
    Morgan NO, Sullivan WN, Schechter MS (1973) Micronized resmethrin dust for control of flies in dairy barns. J Econ Entomol 66(6):1281–1282CrossRefGoogle Scholar
  7. 7.
    Doherty JD, Lauter CJ, Salem N Jr (1986) Synaptic effects of the synthetic pyrethroid resmethrin in rat brain in vitro. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 84C(2):373–379CrossRefGoogle Scholar
  8. 8.
    Soderlund DM (2015) Resmethrin, the first modern pyrethroid insecticide. Pest Manag Sci 71(6):801–807.  https://doi.org/10.1002/ps.3881 CrossRefGoogle Scholar
  9. 9.
    Brown DG, Bodenstein OF, Norton SJ (1973) New potent pyrethroid, bromethrin. J Agric Food Chem 21(5):767–769.  https://doi.org/10.1021/jf60189a044 CrossRefGoogle Scholar
  10. 10.
    Desaiah D, Cutkomp LK, Vea EV, Koch RB (1975) Effect of three pyrethroids on ATPases of insects and fish. Gen Pharmacol 6(1):31–34.  https://doi.org/10.1016/0306-3623(75)90008-7 CrossRefGoogle Scholar
  11. 11.
    Burrage RH, McKinlay KS, Ford RJ (1976) Toxicity and persistence of Bioethanomethrin and dimethoate in the control of grasshoppers (Orthoptera). Can Entomol 108(7):773–776.  https://doi.org/10.4039/Ent108773-7 CrossRefGoogle Scholar
  12. 12.
    Ohsawa K, Casida JE (1979) Photochemistry of the potent knockdown pyrethroid kadethrin. J Agric Food Chem 27(5):1112–1120.  https://doi.org/10.1021/jf60225a023 CrossRefGoogle Scholar
  13. 13.
    Davies M (1974) Evaluation of synthetic pyrethroids through a thermal fogger for control of houseflies. Int Pest Control 16(3):4–7, 11Google Scholar
  14. 14.
    Lutomski KA, Duggan AJ, Engel JF (1990) Preparation of benzoheterocyclyl ketone hydrazones as insecticides. Application: US. US Patent 1988-225519, 4895871Google Scholar
  15. 15.
    Liu C, Xia X, Yu L, Xing J, Chen J, Peng W (2007) Synthesis and biological activity of N′-substituted-4-halogenated-N-methyl-4-methanesulfanilamide benzophenonehydrazone derivatives. Nongyao 46(2):97–99, 102Google Scholar
  16. 16.
    Masaki T (2006) New insecticide affecting ryanodine receptor, flubendiamide: biochemical aspects of its action. J Pestic Sci (Tokyo, Japan) 31(4):484–488.  https://doi.org/10.1584/jpestics.31.484 CrossRefGoogle Scholar
  17. 17.
    Troczka BJ, Williamson MS, Field LM, Davies TGE (2017) Rapid selection for resistance to diamide insecticides in Plutella xylostella via specific amino acid polymorphisms in the ryanodine receptor. NeuroToxicology 60:224–233.  https://doi.org/10.1016/j.neuro.2016.05.012 CrossRefGoogle Scholar
  18. 18.
    X-l Zhang, A-l Liu, Zhao Y, L-x Xiong, Z-m Li (2013) Synthesis and biological activity of novel anthranilic diamides containing N-substituted arylmethylene moieties. Chem Res Chin Univ 29(6):1134–1139.  https://doi.org/10.1007/s40242-013-3038-2 CrossRefGoogle Scholar
  19. 19.
    Jeanmart S, Edmunds AJF, Lamberth C, Pouliot M (2016) Synthetic approaches to the 2010–2014 new agrochemicals. Bioorg Med Chem 24(3):317–341.  https://doi.org/10.1016/j.bmc.2015.12.014 CrossRefGoogle Scholar
  20. 20.
    Lamberth C, Sulzer-Mosse S, Quaranta L, Oostendorp M, Blum M, Beattie D, De Simone F (2016) Fungicidal compositions and method of controlling diseases on useful plants. Application: WO. WO Patent 2015-EP65922, 2016015979Google Scholar
  21. 21.
    Montoya JA, Osejo PP (1948) Studies on the use of DDT and phenyl cellosolve for control of pediculosis in villages in Colombia. Am J Hyg 47(3):247–258Google Scholar
  22. 22.
    Mochida O, Valencia SL, Basilio RP (1986) Chemical control of green leafhoppers to prevent virus diseases, especially tungro disease, on susceptible/intermediate rice cultivars in the tropics. Trop Agric Res Ser (Int Symp Virus Dis Rice Legum Crops Trop, 1985) 19:195–208Google Scholar
  23. 23.
    Temple TE, Liddle GW (1970) Inhibitors of adrenal steroid biosynthesis. Annu Rev Pharmacol 10:199–218.  https://doi.org/10.1146/annurev.pa.10.040170.001215 CrossRefGoogle Scholar
  24. 24.
    Bhattacharyya J (1945) Halogenated organic insecticides. I. Ann Biochem Exp Med 5:127–130Google Scholar
  25. 25.
    Cupp AS, Skinner MK (2001) Actions of the endocrine disruptor methoxychlor and its estrogenic metabolite on in vitro embryonic rat seminiferous cord formation and perinatal testis growth. Reprod Toxicol 15(3):317–326.  https://doi.org/10.1016/s0890-6238(01)00124-1 CrossRefGoogle Scholar
  26. 26.
    Jefferson RN, Morishita FS (1965) Orchid pests and their control. Am Orchid Soc Bull 34(8):722–732Google Scholar
  27. 27.
    Wilson NL, Oliver AD (1969) Evaluation of some acaricides for control of spider mites on three woody ornamentals in Louisiana. J Econ Entomol 62(6):1400–1401.  https://doi.org/10.1093/jee/62.6.1400 CrossRefGoogle Scholar
  28. 28.
    Smith RB Jr, Larson PS, Finnegan JK, Haag HB, Hennigar GR, Cobey F (1959) Toxicologic studies on 2,2-bis-(chlorophenyl)-2,2, 2-trichloroethanol (kelthane). Toxicol Appl Pharmacol 1(2):119–134CrossRefGoogle Scholar
  29. 29.
    Biro V, Voegtli W, Lauger P (1954) Constitution and activity of relatively apolar insecticides possessing lipoid affinity. III. Cyclopropane derivatives. Helvetica Chimica Acta 37:2230–2251CrossRefGoogle Scholar
  30. 30.
    Grummitt O, Buck AC, Becker EI (1945) 1,1-Di (p-chlorophenyl) ethane. J Am Chem Soc 67:2265–2266.  https://doi.org/10.1021/ja01228a505 CrossRefGoogle Scholar
  31. 31.
    Guerrero J, Michael BF, Rohovsky MW, Campbell BP (1983) The activity of closantel as an equine antiparasitic agent. Vet Parasitol 12(1):71–77CrossRefGoogle Scholar
  32. 32.
    Van Cauteren H, Vandenberghe J, Herin V, Vanparys P, Marsboom R (1985) Toxicological properties of closantel. Drug Chem Toxicol (1977) 8(3):101–123CrossRefGoogle Scholar
  33. 33.
    Tramboo SR, Shahardar RA, Allaie IM, Wani ZA, Abbas M (2017) Efficacy of ivermectin, closantel and fenbendazole against gastrointestinal nematodes of sheep in Kashmir valley. J Parasit Dis 41(2):380–382CrossRefGoogle Scholar
  34. 34.
    Kane HJ, Behm CA, Bryant C (1980) Metabolic studies on the new fasciolicidal drug, closantel. Mol Biochem Parasitol 1(6):347–355.  https://doi.org/10.1016/0166-6851(80)90052-3 CrossRefGoogle Scholar
  35. 35.
    Gloeckner C, Garner AL, Mersha F, Oksov Y, Tricoche N, Eubanks LM, Lustigman S, Kaufmann GF, Janda KD (2010) Repositioning of an existing drug for the neglected tropical disease onchocerciasis. Proc Natl Acad Sci USA 107(8):3424–3429.  https://doi.org/10.1073/pnas.0915125107 CrossRefGoogle Scholar
  36. 36.
    Segura-Cabrera A, Bocanegra-Garcia V, Lizarazo-Ortega C, Guo X, Correa-Basurto J, Rodriguez-Perez MA (2011) A computational analysis of the binding mode of closantel as inhibitor of the Onchocerca volvulus chitinase: insights on macrofilaricidal drug design. J Comput Aided Mol Des 25(12):1107–1119.  https://doi.org/10.1007/s10822-011-9489-y CrossRefGoogle Scholar
  37. 37.
    Beynon KI, Edwards MJ, Wright AN (1970) Determination of residues of the molluscicide trifenmorph and its breakdown product triphenylcarbinol. I. Method. Pestic Sci 1(5):200–203.  https://doi.org/10.1002/ps.2780010509 CrossRefGoogle Scholar
  38. 38.
    Duncan J (1981) The toxicology of molluscicides—trifenmorph. Pharmacol Ther 14(1):67–88.  https://doi.org/10.1016/0163-7258(81)90011-5 CrossRefGoogle Scholar
  39. 39.
    Brezden BL, Gardner DR (1983) The effect of the molluscicide Frescon on smooth and cross-striated muscles of Lymnaea stagnalis and Helix aspersa. Pestic Biochem Physiol 20(3):259–268.  https://doi.org/10.1016/0048-3575(83)90099-8 CrossRefGoogle Scholar
  40. 40.
    Dennis Gillian C, Gartrell Brett D (2015) Nontarget mortality of New Zealand lesser short-tailed bats (Mystacina tuberculata) caused by diphacinone. J Wildl Dis 51(1):177–186CrossRefGoogle Scholar
  41. 41.
    Stone WB, Okoniewski JC, Stedelin JR (2003) Anticoagulant rodenticides and raptors: recent findings from New York, 1998–2001. Bull Environ Contam Toxicol 70(1):34–40.  https://doi.org/10.1007/s00128-002-0152-0 CrossRefGoogle Scholar
  42. 42.
    Rattner BA, Horak KE, Lazarus RS, Goldade DA, Johnston JJ (2014) Toxicokinetics and coagulopathy threshold of the rodenticide diphacinone in eastern screech-owls (Megascops asio). Environ Toxicol Chem 33(1):74–81.  https://doi.org/10.1002/etc.2390 CrossRefGoogle Scholar
  43. 43.
    Choi H, Conole D, Atkinson DJ, Laita O, Jay-Smith M, Pagano MA, Ribaudo G, Cavalli M, Bova S, Hopkins B, Brimble MA, Rennison D (2016) Fatty acid-derived pro-toxicants of the rat selective toxicant norbormide. Chem Biodiversity 13(6):762–775.  https://doi.org/10.1002/cbdv.201500241 CrossRefGoogle Scholar
  44. 44.
    D’Amore C, Orso G, Fusi F, Pagano MA, Miotto G, Forgiarini A, De Martin S, Castellani G, Ribaudo G, Rennison D, Brimble MA, Hopkins B, Ferrarese A, Bova S (2016) An NBD derivative of the selective rat toxicant norbormide as a new probe for living cell imaging. Front Pharmacol 7:315/311–315/313.  https://doi.org/10.3389/fphar.2016.00315 CrossRefGoogle Scholar
  45. 45.
    Clarke EGC (1965) Identification of norbormide, a new Rattus-specific rodenticide. J Pharm Pharmacol 17(2):126.  https://doi.org/10.1111/j.2042-7158.1965.tb07630.x CrossRefGoogle Scholar
  46. 46.
    Roszkowski AP (1965) The pharmacological properties of norbormide, a selective rat toxicant. J Pharmacol Exp Ther 149(2):288–299Google Scholar
  47. 47.
    Bova S, Trevisi L, Debetto P, Cima L, Furnari M, Luciani S, Padrini R, Cargnelli G (1996) Vasorelaxant properties of norbormide, a selective vasoconstrictor agent for the rat microvasculature. Br J Pharmacol 117(6):1041–1046.  https://doi.org/10.1111/j.1476-5381.1996.tb16694.x CrossRefGoogle Scholar
  48. 48.
    Poos GI, Mohrbacher RJ, Carson EL, Paragamian V, Puma BM, Rasmussen CR, Roszkowski AP (1966) Structure-activity studies with the selective rat toxicant norbormide. J Med Chem 9(4):537–540.  https://doi.org/10.1021/jm00322a021 CrossRefGoogle Scholar
  49. 49.
    Jay-Smith M, Murphy EC, Shapiro L, Eason CT, Brimble MA, Rennison D (2016) Stereoselective synthesis of the rat selective toxicant norbormide. Tetrahedron 72(35):5331–5342.  https://doi.org/10.1016/j.tet.2016.07.014 CrossRefGoogle Scholar
  50. 50.
    Luo C, Bristow JT (2017) Picarbutrazox and coumoxystrobin fungicidal composition. Application: CN. CN Patent 2015-11008848, 106922698Google Scholar
  51. 51.
    Felsenstein F, Semar M, Stammler G (2010) Sensitivity of Wheat Powdery Mildew (Blumeria graminis f.sp. tritici) towards Metrafenone. Gesunde Pflanz 62(1):29–33.  https://doi.org/10.1007/s10343-010-0214-x CrossRefGoogle Scholar
  52. 52.
    Opalski KS, Tresch S, Kogel K-H, Grossmann K, Koehle H, Hueckelhoven R (2006) Metrafenone: studies on the mode of action of a novel cereal powdery mildew fungicide. Pest Manag Sci 62(5):393–401.  https://doi.org/10.1002/ps.1176 CrossRefGoogle Scholar
  53. 53.
    Kunova A, Pizzatti C, Bonaldi M, Cortesi P (2016) Metrafenone resistance in a population of Erysiphe necator in northern Italy. Pest Manag Sci 72(2):398–404.  https://doi.org/10.1002/ps.4060 CrossRefGoogle Scholar
  54. 54.
    Zhang Q, X-d Hua, H-y Shi, J-s Liu, M-m Tian, M-h Wang (2015) Enantioselective bioactivity, acute toxicity and dissipation in vegetables of the chiral triazole fungicide flutriafol. J Hazard Mater 284:65–72.  https://doi.org/10.1016/j.jhazmat.2014.10.033 CrossRefGoogle Scholar
  55. 55.
    Yu P, Jia C, Song W, Liu F (2012) Dissipation and residues of flutriafol in wheat and soil under field conditions. Bull Environ Contam Toxicol 89(5):1040–1045.  https://doi.org/10.1007/s00128-012-0810-9 CrossRefGoogle Scholar
  56. 56.
    Kennard CHL, Smith G, Palm TB (1981) α, α-Bis(p-chlorophenyl)-3-pyridinemethanol (parinol). Acta Crystallogr Sect B Struct Crystallogr Cryst Chem B37(9):1796–1798.  https://doi.org/10.1107/s0567740881007243 CrossRefGoogle Scholar
  57. 57.
    Zhang H, Wang X, Zhuang S, Qian M, Jiang K, Wang X, Xu H, Qi P, Wang Q (2012) Enantioselective separation and simultaneous determination of fenarimol and nuarimol in fruits, vegetables, and soil by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 404(6–7):1983–1991.  https://doi.org/10.1007/s00216-012-6325-8 CrossRefGoogle Scholar
  58. 58.
    Ragsdale NN, Sisler HD (1972) Inhibition of ergosterol synthesis in Ustilago maydis by the fungicide triarimol. Biochem Biophys Res Commun 46(6):2048–2053.  https://doi.org/10.1016/0006-291x(72)90757-7 CrossRefGoogle Scholar
  59. 59.
    Siegel MR (1981) Sterol-inhibiting fungicides: effects on sterol biosynthesis and sites of action. Plant Dis 65(12):986–989.  https://doi.org/10.1094/pd-65-986 CrossRefGoogle Scholar
  60. 60.
    Oh K, Matsumoto T, Yamagami A, Hoshi T, Nakano T, Yoshizawa Y (2015) Fenarimol, a pyrimidine-type fungicide, inhibits brassinosteroid biosynthesis. Int J Mol Sci 16(8):17273–17288.  https://doi.org/10.3390/ijms160817273 CrossRefGoogle Scholar
  61. 61.
    Wang J-M, Asami T, Yoshida S, Murofushi N (2001) Biological evaluation of 5-substituted pyrimidine derivatives as inhibitors of brassinosteroid biosynthesis. Biosci Biotechnol Biochem 65(4):817–822.  https://doi.org/10.1271/bbb.65.817 CrossRefGoogle Scholar
  62. 62.
    Ogura H, Nishida CR, Hoch UR, Perera R, Dawson JH, Ortiz de Montellano PR (2004) EpoK, a cytochrome P450 involved in biosynthesis of the anticancer agents epothilones A and B. Substrate-mediated rescue of a P450 enzyme. Biochemistry 43(46):14712–14721.  https://doi.org/10.1021/bi048980d CrossRefGoogle Scholar
  63. 63.
    Mordvinov VA, Shilov AG, Pakharukova MY (2017) Anthelmintic activity of cytochrome P450 inhibitors miconazole and clotrimazole: in vitro effect on the liver fluke Opisthorchis felineus. Int J Antimicrob Agents 50(1):97–100.  https://doi.org/10.1016/j.ijantimicag.2017.01.037 CrossRefGoogle Scholar
  64. 64.
    Buchenauer H (1978) Analogy in the mode of action of fluotrimazole and clotrimazole in Ustilago avenae. Pestic Biochem Physiol 8(1):15–25.  https://doi.org/10.1016/0048-3575(78)90088-3 CrossRefGoogle Scholar
  65. 65.
    Waris E (1960) Dichlorophen in the treatment of diphyllobothriasis. Ann Med Intern Fenn 49:225–234Google Scholar
  66. 66.
    Tezuka T, Izawa M (1992) Bactericidal and fungicidal ointments for cleaning of optical lenses. Application: JP. JP Patent 1990-160282, 04049207Google Scholar
  67. 67.
    Cussens T (1989) Compositions containing dichlorophen as aquatic algicide, bactericide, and fungicide. Application: ZA. ZA Patent 1988-5291, 8805291Google Scholar
  68. 68.
    Reddy PP (1972) Efficacy of selected fungicides on Rhizoctonia solani under laboratory, greenhouse, and field conditions. Mysore J Agr Sci 6(4):435–439Google Scholar
  69. 69.
    Sciumbato GL, Hegwood CP Jr (1979) Use of elevated fungicide rates to control cucumber fruit rot under multiple harvesting conditions. Plant Dis Rep 63(6):482–485Google Scholar
  70. 70.
    Kuhn PJ, Pitt D, Lee SA, Wakley G, Sheppard AN (1991) Effects of dimethomorph on the morphology and ultrastructure of Phytophthora. Mycol Res 95(3):333–340.  https://doi.org/10.1016/s0953-7562(09)81244-6 CrossRefGoogle Scholar
  71. 71.
    Zhu SS, Liu XL, Liu PF, Li Y, Li JQ, Wang HM, Yuan SK, Si NG (2007) Flumorph is a novel fungicide that disrupts microfilament organization in Phytophthora melonis. Phytopathology 97(5):643–649.  https://doi.org/10.1094/phyto-97-5-0643 CrossRefGoogle Scholar
  72. 72.
    Hua C, Kots K, Ketelaar T, Govers F, Meijer HJG (2015) Effect of flumorph on F-Actin dynamics in the potato late blight pathogen Phytophthora infestans. Phytopathology 105(4):419–423.  https://doi.org/10.1094/phyto-04-14-0119-r CrossRefGoogle Scholar
  73. 73.
    Yan X, Qin W, Sun L, Qi S, Yang D, Qin Z, Yuan H (2010) Study of inhibitory effects and action mechanism of the novel fungicide Pyrimorph against Phytophthora capsici. J Agric Food Chem 58(5):2720–2725.  https://doi.org/10.1021/jf902410x CrossRefGoogle Scholar
  74. 74.
    Xiao Y-M, Esser L, Zhou F, Li C, Zhou Y-H, Yu C-A, Qin Z-H, Xia D (2014) Studies on inhibition of respiratory cytochrome bc1 complex by the fungicide pyrimorph suggest a novel inhibitory mechanism. PLoS ONE 9(4):e93765/93761–e93765/93712.  https://doi.org/10.1371/journal.pone.0093765 CrossRefGoogle Scholar
  75. 75.
    Bravo-Altamirano K, Lu Y, Loy B, Buchan Z, Jones D, Wilmot J, Rigoli J, Dekorver K, Daeuble J, Herrick J, Wang X, Yao C, Meyer K (2016) Preparation of macrolide picolinamide compounds as fungicides. Application: WO. WO Patent 2015-US66764, 2016109257Google Scholar
  76. 76.
    El-Abyad MS, Abu-Taleb AM, Ghareeb M (1992) The effects of Fusarium oxysporum f.sp. lycopersici (Sacc.) Snyder and Hansen on tomato in diphenamid-treated soil. Mycopathologia 119(1):35–41Google Scholar
  77. 77.
    Yang X, Guschina IA, Hurst S, Wood S, Langford M, Hawkes T, Harwood JL (2010) The action of herbicides on fatty acid biosynthesis and elongation in barley and cucumber. Pest Manage Sci 66(7):794–800.  https://doi.org/10.1002/ps.1944 CrossRefGoogle Scholar
  78. 78.
    Ponder F, Jr., Schlesinger RC (1984) Site influences herbicide efficiency and growth of planted hardwoods. For Ecol Manage 9(2):147–153.  https://doi.org/10.1016/0378-1127(84)90079-3 CrossRefGoogle Scholar
  79. 79.
    Fujii Y (1979) Mode of herbicidal activity of methoxyphenone. Nippon Noyaku Gakkaishi 4(3):391–399Google Scholar
  80. 80.
    Fujii Y, Kurokawa T, Yamaguchi I, Misato T (1978) Selective herbicidal activity of 3,3′-dimethyl-4-methoxybenzophenone (methoxyphenone, NK-049); absorption, translocation, and metabolism. Nippon Noyaku Gakkaishi 3(3):291–298Google Scholar
  81. 81.
    Kimura F (1984) Paicer, a new rice herbicide pyrazoxyfen (SL-49). Jpn Pestic Inf 45:24–27Google Scholar
  82. 82.
    Matsumoto H (2005) Mode of action of pyrazole herbicides pyrazolate and pyrazoxyfen: HPPD inhibition by the common metabolite. ACS Symp Ser (New Discov Agrochem) 892:161–171.  https://doi.org/10.1021/bk-2005-0892.ch015 CrossRefGoogle Scholar
  83. 83.
    Ikeda K, Goh A (1991) A new pesticide: benzofenap (Yukawide). Jpn Pestic Inf 59:16–18Google Scholar
  84. 84.
    Trebst A, Depka B, Jaeger J, Oettmeier W (2004) Reversal of the inhibition of photosynthesis by herbicides affecting hydroxyphenylpyruvate dioxygenase by plastoquinone and tocopheryl derivatives in Chlamydomonas reinhardtii. Pest Manag Sci 60(7):669–674.  https://doi.org/10.1002/ps.847 CrossRefGoogle Scholar
  85. 85.
    Reddy SS, Stahlman PW, Geier PW, Peterson DE (2012) Broadleaf weed control and crop safety with premixed pyrasulfotole and bromoxynil in winter wheat. Am J Plant Sci 3(11):1613–1618.  https://doi.org/10.4236/ajps.2012.311195 CrossRefGoogle Scholar
  86. 86.
    Menne H (2008) Pyrasulfotole, a new dimension for resistance management in cereal crops. Pflanzenschutz-Nachr Bayer (Engl Ed) 61(1):107–120Google Scholar
  87. 87.
    Fromme DD, Dotray PA, James Grichar W, Fernandez CJ (2012) Weed control and grain sorghum (Sorghum bicolor) tolerance to pyrasulfotole plus bromoxynil. Int J Agron.  https://doi.org/10.1155/2012/951454 CrossRefGoogle Scholar
  88. 88.
    Grossmann K, Ehrhardt T (2007) On the mechanism of action and selectivity of the corn herbicide topramezone: a new inhibitor of 4-hydroxyphenylpyruvate dioxygenase. Pest Manag Sci 63(5):429–439.  https://doi.org/10.1002/ps.1341 CrossRefGoogle Scholar
  89. 89.
    Gitsopoulos TK, Melidis V, Evgenidis G (2010) Response of maize (Zea mays L.) to post-emergence applications of topramezone. Crop Prot 29(10):1091–1093.  https://doi.org/10.1016/j.cropro.2010.06.020 CrossRefGoogle Scholar
  90. 90.
    Soltani N, Sikkema PH, Zandstra J, O’Sullivan J, Robinson DE (2007) Response of eight sweet corn (Zea mays L.) hybrids to topramezone. HortScience 42(1):110–112Google Scholar
  91. 91.
    Huang Y, Xu J, Wu Y, Xu L, Zhou H, Sun H, Dong L (2016) Complex herbicidal composition containing tolpyralate, atrazine and bentazone for cornfield. Application: CN. -CN Patent 2015-10834500, 105432630Google Scholar
  92. 92.
    Wu SH, Goyne KW, Lerch RN, Lin C-H (2011) Adsorption of isoxaflutole degradates to aluminum and iron hydrous oxides. J Environ Qual 40(2):528–537.  https://doi.org/10.2134/jeq2010.0338 CrossRefGoogle Scholar
  93. 93.
    Garcia I, Job D, Matringe M (2000) Inhibition of p-hydroxyphenylpyruvate dioxygenase by the diketonitrile of isoxaflutole: a case of half-site reactivity. Biochemistry 39(25):7501–7507.  https://doi.org/10.1021/bi000135h CrossRefGoogle Scholar
  94. 94.
    Koecher H, Kocur J (1993) Influence of wetting agents on the foliar uptake and herbicidal activity of glufosinate. Pestic Sci 37(2):155–158.  https://doi.org/10.1002/ps.2780370208 CrossRefGoogle Scholar
  95. 95.
    Koo SJ, Ahn S-C, Lim JS, Chae SH, Kim JS, Lee JH, Cho JH (1997) Biological activity of the new herbicide LGC-40863 {benzophenone O-[2,6-bis[(4,6-dimethoxy-2-pyrimidinyl)oxy]benzoyl]oxime}. Pestic Sci 51(2):109–114.  https://doi.org/10.1002/(sici)1096-9063(199710)51:2%3c109:aid-ps585%3e3.0.co;2-7 CrossRefGoogle Scholar
  96. 96.
    Koo SJ, Kuramochi H, Chae SH (2006) Herbicidal efficacy and selectivity of pyribenzoxim in turfgrasses. Weed Biol Manag 6(2):96–101.  https://doi.org/10.1111/j.1445-6664.2006.00204.x CrossRefGoogle Scholar
  97. 97.
    Koo SJ, Caseley JC (2008) Biological activity of pyribenzoxim in winter wheat and associated weeds. Weed Biol Manag 8(1):11–17.  https://doi.org/10.1111/j.1445-6664.2007.00268.x CrossRefGoogle Scholar
  98. 98.
    Chang H-R, Keum Young S, Koo S-J, Moon J-K, Kim K, Kim J-H (2011) Metabolism of a new herbicide, [(14)c]pyribenzoxim, in rice. J Agric Food Chem 59(5):1918–1923CrossRefGoogle Scholar
  99. 99.
    Grisar JM, Parker RA, Kariya T, Blohm TR, Fleming RW, Petrow V (1972) Treloxinate and related hypolipidemic 12H-dibenzo[d, g][1, 3]dioxocin-6-carboxylate derivatives. J Med Chem 15(12):1273–1278.  https://doi.org/10.1021/jm00282a018 CrossRefGoogle Scholar
  100. 100.
    Li B, Xiang D, Zhang Z, Man Y (2005) Preparation of 12H-dibenzo[d,g][1,3]dioxocin-6-carboxylic acid amino esters as herbicides. Application: CN. CN Patent 2003-10119042, 1626529Google Scholar
  101. 101.
    Jin RF, Ji HY, Xiang D, Li B (2006) Isopropylideneamino-12H-dibenzo[d, g][1, 3]dioxocine-6-carboxylate. Acta Crystallogr Sect E Struct Rep Online 62(9):o3699–o3700.  https://doi.org/10.1107/s1600536806030418 CrossRefGoogle Scholar
  102. 102.
    Wang M, Qian Y, Liu X, Wei P, Deng M, Wang L, Wu H, Zhu G (2017) Multiple spectroscopic analyses reveal the fate and metabolism of sulfamide herbicide triafamone in agricultural environments. Environ Pollut (Oxford, United Kingdom) 230:107–115.  https://doi.org/10.1016/j.envpol.2017.06.046 CrossRefGoogle Scholar
  103. 103.
    Sun L, Wu R, Su W, Gao Z, Lu C (2017) Physiological basis for isoxadifen-ethyl induction of nicosulfuron detoxification in maize hybrids. PLoS ONE 12(3):e0173502/0173501–e0173502/0173516.  https://doi.org/10.1371/journal.pone.0173502 CrossRefGoogle Scholar
  104. 104.
    Coolbaugh RC, Heil DR, West CA (1982) Comparative effects of substituted pyrimidines on growth and gibberellin biosynthesis in Gibberella fujikuroi. Plant Physiol 69(3):712–716.  https://doi.org/10.1104/pp.69.3.712 CrossRefGoogle Scholar
  105. 105.
    Sisler HD, Ragsdale NN, Waterfield WF (1984) Biochemical aspects of the fungitoxic and growth regulatory action of fenarimol and other pyrimidin-5-ylmethanols. Pestic Sci 15(2):167–176.  https://doi.org/10.1002/ps.2780150208 CrossRefGoogle Scholar
  106. 106.
    Fukazawa M, Shirakawa N (2001) Effects of inabenfide [4′-chloro-2′-(α-hydroxybenzyl)-isonicotinanilide] on growth, lodging, and yield components of rice. Plant Prod Sci 4(2):118–125.  https://doi.org/10.1626/pps.4.118 CrossRefGoogle Scholar
  107. 107.
    Miyazaki A (1997) Progress and prospects of optically active pesticides. Nippon Noyaku Gakkaishi 22(2):136–155Google Scholar
  108. 108.
    Fukazawa M, Kumagai Y, Miki T, Ishihara K, Hara M, Shirakawa N (2002) Effects of enantiomers of inabenfide [4′-chloro-2′- (α-hydroxybenzyl) isonicotinanilide] on growth, lodging and yield components of rice (Oryza sativa). Nippon Noyaku Gakkaishi 27(1):17–23Google Scholar
  109. 109.
    Dybing CD, Lay C (1981) Yields and yield components of flax, soybean, wheat, and oats treated with morphactins and other growth regulators for senescence delay. Crop Sci 21(6):904–908.  https://doi.org/10.2135/cropsci1981.0011183X002100060025x CrossRefGoogle Scholar
  110. 110.
    Dybing CD, Lay C (1982) Oil and protein in field crops treated with morphactins and other growth regulators for senescence delay. Crop Sci 22(5):1054–1058.  https://doi.org/10.2135/cropsci1982.0011183X002200050039x CrossRefGoogle Scholar
  111. 111.
    Dybing CD, Lay C (1981) Field evaluations of morphactins and other growth regulators for senescence delay of flax, soybean, wheat, and oats. Crop Sci 21(6):879–884.  https://doi.org/10.2135/cropsci1981.0011183X002100060020x CrossRefGoogle Scholar
  112. 112.
    Li X, Wan C, Du S, Li H, Yuan H, Jiang J, Xiao Y, Qin Z (2015) Synthesis and fungicidal activities of biaryl methanone o-benzyl oximes. Gaodeng Xuexiao Huaxue Xuebao 36(12):2415–2420.  https://doi.org/10.7503/cjcu20150508 CrossRefGoogle Scholar
  113. 113.
    Li X, Han X, He M, Xiao Y, Qin Z (2016) Synthesis and fungicidal activity of 1,1-diaryl tertiary alcohols. Bioorg Med Chem Lett 26(24):5936–5942.  https://doi.org/10.1016/j.bmcl.2016.10.090 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.College of ScienceChina Agricultural UniversityBeijingChina

Personalised recommendations