Advertisement

A review on iron chelators as potential therapeutic agents for the treatment of Alzheimer’s and Parkinson’s diseases

  • Yash Pal Singh
  • Amruta Pandey
  • Swati Vishwakarma
  • Gyan Modi
Short Review

Abstract

Iron plays a vital role in several cellular functions due to its unique physiochemical properties. Iron concentration increases in the brain with age due to multiple factors. Excessive amount of iron can lead to formation of reactive oxygen species. Neurodegenerative disorders are characterized by iron supplemented increase in oxidative stress and cellular damage. There is an urgent need of novel therapies which should not only provide symptomatic relief but also be able to modulate iron accumulation in the brain. Therefore, the development of novel iron chelators as neuroprotective agents for the treatment of neurodegeneration is an emerging trend. Several iron chelators including 8-hydroxyquinoline derivatives, dopaminergic agonists and natural products are under preclinical and clinical investigations for the treatment of neurodegenerative disorders.

Keywords

Iron regulating proteins Neurodegenerative disorders Desferrioxamine Dopamine D3 agonist 8-Hydroxyquinoline 

Notes

Acknowledgements

GM is thankful to Indian Institute of Technology (BHU) for providing seed money (SM/2016-17/1198/L) and to carry out this work. YP, AP and SV are thankful to Indian Institute of Technology (BHU) and MHRD, India for funding. GM thanks Dr. SK Singh and Mr. Chandrim for providing the valuable comments and for help during preparation of this manuscript, respectively.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    Gaeta A, Hider RC (2005) The crucial role of metal ions in neurodegeneration: the basis for a promising therapeutic strategy. Br J Pharmacol 146(8):1041–1059.  https://doi.org/10.1038/sj.bjp.0706416 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kaur D, Andersen JK (2002) Ironing out Parkinson’s disease: is therapeutic treatment with iron chelators a real possibility? Aging Cell 1(1):17–21CrossRefGoogle Scholar
  3. 3.
    Youdim MB, Stephenson G, Ben Shachar D (2004) Ironing iron out in Parkinson’s disease and other neurodegenerative diseases with iron chelators: a lesson from 6-hydroxydopamine and iron chelators, desferal and VK-28. Ann N Y Acad Sci 1012:306–325CrossRefGoogle Scholar
  4. 4.
    Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13(10):1045–1060.  https://doi.org/10.1016/s1474-4422(14)70117-6 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Prati F, De Simone A, Bisignano P, Armirotti A, Summa M, Pizzirani D, Scarpelli R, Perez DI, Andrisano V, Perez-Castillo A, Monti B, Massenzio F, Polito L, Racchi M, Favia AD, Bottegoni G, Martinez A, Bolognesi ML, Cavalli A (2015) Multitarget drug discovery for Alzheimer’s disease: triazinones as BACE-1 and GSK-3beta inhibitors. Angew Chem Int Ed Engl 54(5):1578–1582.  https://doi.org/10.1002/anie.201410456 CrossRefPubMedGoogle Scholar
  6. 6.
    Silva T, Reis J, Teixeira J, Borges F (2014) Alzheimer’s disease, enzyme targets and drug discovery struggles: from natural products to drug prototypes. Ageing Res Rev 15:116–145CrossRefGoogle Scholar
  7. 7.
    West S, Bhugra P (2015) Emerging drug targets for Abeta and tau in Alzheimer’s disease: a systematic review. Br J Clin Pharmacol 80(2):221–234.  https://doi.org/10.1111/bcp.12621 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Shelanski M, Shin W, Aubry S, Sims P, Alvarez MJ, Califano A (2015) A systems approach to drug discovery in Alzheimer’s disease. Neurotherapeutics 12(1):126–131.  https://doi.org/10.1007/s13311-014-0335-5 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Belaidi AA, Bush AI (2016) Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: targets for therapeutics. J Neurochem 139(Suppl 1):179–197.  https://doi.org/10.1111/jnc.13425 CrossRefPubMedGoogle Scholar
  10. 10.
    Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345(1–2):91–104.  https://doi.org/10.1007/s11010-010-0563-x CrossRefPubMedGoogle Scholar
  11. 11.
    Singh N (2014) The role of iron in prion disease and other neurodegenerative diseases. PLoS Pathog 10(9):e1004335.  https://doi.org/10.1371/journal.ppat.1004335 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Singh N, Haldar S, Tripathi AK, Horback K, Wong J, Sharma D, Beserra A, Suda S, Anbalagan C, Dev S, Mukhopadhyay CK, Singh A (2014) Brain iron homeostasis: from molecular mechanisms to clinical significance and therapeutic opportunities. Antioxid Redox Signal 20(8):1324–1363.  https://doi.org/10.1089/ars.2012.4931 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Moore DJ, West AB, Dawson VL, Dawson TM (2005) Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 28:57–87.  https://doi.org/10.1146/annurev.neuro.28.061604.135718 CrossRefPubMedGoogle Scholar
  14. 14.
    Berg D, Gerlach M, Youdim M, Double K, Zecca L, Riederer P, Becker G (2002) Brain iron pathways and their relevance to Parkinson’s disease. J Neurochem 80(4):719–719CrossRefGoogle Scholar
  15. 15.
    Li K, Reichmann H (2016) Role of iron in neurodegenerative diseases. J Neural Transm (Vienna, Austria: 1996) 123(4):389–399.  https://doi.org/10.1007/s00702-016-1508-7 CrossRefGoogle Scholar
  16. 16.
    Ward RJ, Dexter DT, Crichton RR (2012) Chelating agents for neurodegenerative diseases. Curr Med Chem 19(17):2760–2772CrossRefGoogle Scholar
  17. 17.
    Martin-Bastida A, Ward RJ, Newbould R, Piccini P, Sharp D, Kabba C, Patel MC, Spino M, Connelly J, Tricta F, Crichton RR, Dexter DT (2017) Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson’s disease. Sci Rep 7(1):1398.  https://doi.org/10.1038/s41598-017-01402-2 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hider RC, Ma Y, Molina-Holgado F, Gaeta A, Roy S (2008) Iron chelation as a potential therapy for neurodegenerative disease. Biochem Soc Trans 36(Pt 6):1304–1308.  https://doi.org/10.1042/bst0361304 CrossRefPubMedGoogle Scholar
  19. 19.
    Finkelstein DI, Billings JL, Adlard PA, Ayton S, Sedjahtera A, Masters CL, Wilkins S, Shackleford DM, Charman SA, Bal W, Zawisza IA, Kurowska E, Gundlach AL, Ma S, Bush AI, Hare DJ, Doble PA, Crawford S, Gautier EC, Parsons J, Huggins P, Barnham KJ, Cherny RA (2017) The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson’s disease. Acta Neuropathol Commun 5(1):53.  https://doi.org/10.1186/s40478-017-0456-2 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Liu G, Men P, Perry G, Smith MA (2010) Nanoparticle and iron chelators as a potential novel Alzheimer therapy. Methods Mol Biol (Clifton, NJ) 610:123–144.  https://doi.org/10.1007/978-1-60327-029-8_8 CrossRefGoogle Scholar
  21. 21.
    Hider RC, Roy S, Ma YM, Le Kong X, Preston J (2011) The potential application of iron chelators for the treatment of neurodegenerative diseases. Metallomics 3(3):239–249.  https://doi.org/10.1039/C0MT00087F CrossRefPubMedGoogle Scholar
  22. 22.
    Kumar D, Gupta SK, Ganeshpurkar A, Gutti G, Krishnamurthy S, Modi G, Singh SK (2018) Development of Piperazinediones as dual inhibitor for treatment of Alzheimer’s disease. Eur J Med Chem 150:87–101.  https://doi.org/10.1016/j.ejmech.2018.02.078 CrossRefPubMedGoogle Scholar
  23. 23.
    Youdim MB (2012) M30, a brain permeable multitarget neurorestorative drug in post nigrostriatal dopamine neuron lesion of parkinsonism animal models. Parkinsonism Relat Disord 18(Suppl 1):S151–S154.  https://doi.org/10.1016/s1353-8020(11)70047-5 CrossRefPubMedGoogle Scholar
  24. 24.
    Lanza V, Milardi D, Di Natale G, Pappalardo G (2018) Repurposing of copper(II)-chelating drugs for the treatment of neurodegenerative diseases. Curr Med Chem 25(4):525–539.  https://doi.org/10.2174/0929867324666170518094404 CrossRefPubMedGoogle Scholar
  25. 25.
    Oliveri V, Lanza V, Milardi D, Viale M, Maric I, Sgarlata C, Vecchio G (2017) Amino- and chloro-8-hydroxyquinolines and their copper complexes as proteasome inhibitors and antiproliferative agents. Metallomics 9(10):1439–1446.  https://doi.org/10.1039/c7mt00156h CrossRefPubMedGoogle Scholar
  26. 26.
    Ramos P, Santos A, Pinto NR, Mendes R, Magalhaes T, Almeida A (2014) Iron levels in the human brain: a post-mortem study of anatomical region differences and age-related changes. J Trace Elem Med Biol 28(1):13–17.  https://doi.org/10.1016/j.jtemb.2013.08.001 CrossRefPubMedGoogle Scholar
  27. 27.
    Zecca L, Gallorini M, Schunemann V, Trautwein AX, Gerlach M, Riederer P, Vezzoni P, Tampellini D (2001) Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes. J Neurochem 76(6):1766–1773CrossRefGoogle Scholar
  28. 28.
    Zecca L, Stroppolo A, Gatti A, Tampellini D, Toscani M, Gallorini M, Giaveri G, Arosio P, Santambrogio P, Fariello RG, Karatekin E, Kleinman MH, Turro N, Hornykiewicz O, Zucca FA (2004) The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc Natl Acad Sci USA 101(26):9843–9848.  https://doi.org/10.1073/pnas.0403495101 CrossRefPubMedGoogle Scholar
  29. 29.
    von Bernhardi R, Eugenín-von Bernhardi L, Eugenín J (2015) Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci 7:124.  https://doi.org/10.3389/fnagi.2015.00124 CrossRefGoogle Scholar
  30. 30.
    Conde JR, Streit WJ (2006) Microglia in the aging brain. J Neuropathol Exp Neurol 65(3):199–203.  https://doi.org/10.1097/01.jnen.0000202887.22082.63 CrossRefPubMedGoogle Scholar
  31. 31.
    Luo X-G, Ding J-Q, Chen S-D (2010) Microglia in the aging brain: relevance to neurodegeneration. Mol Neurodegener 5:12–12.  https://doi.org/10.1186/1750-1326-5-12 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Elahy M, Jackaman C, Mamo JCL, Lam V, Dhaliwal SS, Giles C, Nelson D, Takechi R (2015) Blood–brain barrier dysfunction developed during normal aging is associated with inflammation and loss of tight junctions but not with leukocyte recruitment. Immun Ageing I A 12:2.  https://doi.org/10.1186/s12979-015-0029-9 CrossRefPubMedGoogle Scholar
  33. 33.
    Lhermitte J, Kraus WM, McAlpine D (1924) Original papers: on the occurrence of abnormal deposits of iron in the brain in parkinsonism with special reference to its localisation. J Neurol Psychopathol 5(19):195–208CrossRefGoogle Scholar
  34. 34.
    Earle KM (1968) Studies on Parkinson’s disease including X-ray fluorescent spectroscopy of formalin fixed brain tissue. J Neuropathol Exp Neurol 27(1):1–14CrossRefGoogle Scholar
  35. 35.
    Dexter DT, Carayon A, Javoy-Agid F, Agid Y, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain J Neurol 114(Pt 4):1953–1975CrossRefGoogle Scholar
  36. 36.
    Riederer P, Rausch WD, Schmidt B, Kruzik P, Konradi C, Sofic E, Danielczyk W, Fischer M, Ogris E (1988) Biochemical fundamentals of Parkinson’s disease. Mount Sinai J Med 55(1):21–28Google Scholar
  37. 37.
    Bartzokis G, Cummings JL, Markham CH, Marmarelis PZ, Treciokas LJ, Tishler TA, Marder SR, Mintz J (1999) MRI evaluation of brain iron in earlier- and later-onset Parkinson’s disease and normal subjects. Magn Reson Imaging 17(2):213–222CrossRefGoogle Scholar
  38. 38.
    Sian-Hulsmann J, Mandel S, Youdim MB, Riederer P (2011) The relevance of iron in the pathogenesis of Parkinson’s disease. J Neurochem 118(6):939–957.  https://doi.org/10.1111/j.1471-4159.2010.07132.x CrossRefPubMedGoogle Scholar
  39. 39.
    Becker G, Seufert J, Bogdahn U, Reichmann H, Reiners K (1995) Degeneration of substantia nigra in chronic Parkinson’s disease visualized by transcranial color-coded real-time sonography. Neurology 45(1):182–184CrossRefGoogle Scholar
  40. 40.
    Iadecola C (2015) Dangerous leaks: blood-brain barrier woes in the aging hippocampus. Neuron 85(2):231–233.  https://doi.org/10.1016/j.neuron.2014.12.056 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Balveer K, Pyar K, Wonke B (2000) Combined oral and parenteral iron chelation in beta thalassaemia major. Med J Malaysia 55(4):493–497PubMedGoogle Scholar
  42. 42.
    Obermeier B, Daneman R, Ransohoff RM (2013) Development, maintenance and disruption of the blood-brain barrier. Nat Med 19(12):1584–1596.  https://doi.org/10.1038/nm.3407 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Wessling-Resnick M (2010) Iron homeostasis and the inflammatory response. Annu Rev Nutr 30:105–122.  https://doi.org/10.1146/annurev.nutr.012809.104804 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zucca FA, Segura-Aguilar J, Ferrari E, Munoz P, Paris I, Sulzer D, Sarna T, Casella L, Zecca L (2015) Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog Neurobiol.  https://doi.org/10.1016/j.pneurobio.2015.09.012 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ayton S, Lei P, Mclean C, Bush AI, Finkelstein DI (2016) Transferrin protects against Parkinsonian neurotoxicity and is deficient in Parkinson’s substantia nigra. Signal Transduct Target Therapy 1:16015CrossRefGoogle Scholar
  46. 46.
    Zhang W, Phillips K, Wielgus AR, Liu J, Albertini A, Zucca FA, Faust R, Qian SY, Miller DS, Chignell CF, Wilson B, Jackson-Lewis V, Przedborski S, Joset D, Loike J, Hong JS, Sulzer D, Zecca L (2011) Neuromelanin activates microglia and induces degeneration of dopaminergic neurons: implications for progression of Parkinson’s disease. Neurotox Res 19(1):63–72.  https://doi.org/10.1007/s12640-009-9140-z CrossRefPubMedGoogle Scholar
  47. 47.
    Linert W, Jameson GN (2000) Redox reactions of neurotransmitters possibly involved in the progression of Parkinson’s disease. J Inorg Biochem 79(1–4):319–326CrossRefGoogle Scholar
  48. 48.
    Silva BA, Einarsdóttir Ó, Fink AL, Uversky VN (2013) Biophysical characterization of α-synuclein and rotenone interaction. Biomolecules 3(3):703–732.  https://doi.org/10.3390/biom3030703 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Singh SK, Dutta A, Modi G (2017) Alpha-Synuclein aggregation modulation: an emerging approach for the treatment of Parkinson’s disease. Future Med Chem 9(10):1039–1053.  https://doi.org/10.4155/fmc-2017-0016 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Paleologou KE, Irvine GB, El-Agnaf OM (2005) Alpha-synuclein aggregation in neurodegenerative diseases and its inhibition as a potential therapeutic strategy. Biochem Soc Trans 33(Pt 5):1106–1110.  https://doi.org/10.1042/bst20051106 CrossRefPubMedGoogle Scholar
  51. 51.
    Di Lorenzo F (2015) Iron and Parkinson’s disease. Neuro Endocrinol Lett 36(1):24–27PubMedGoogle Scholar
  52. 52.
    Binolfi A, Rasia RM, Bertoncini CW, Ceolin M, Zweckstetter M, Griesinger C, Jovin TM, Fernandez CO (2006) Interaction of alpha-synuclein with divalent metal ions reveals key differences: a link between structure, binding specificity and fibrillation enhancement. J Am Chem Soc 128(30):9893–9901.  https://doi.org/10.1021/ja0618649 CrossRefPubMedGoogle Scholar
  53. 53.
    Carboni E, Lingor P (2015) Insights on the interaction of alpha-synuclein and metals in the pathophysiology of Parkinson’s disease. Metallomics 7(3):395–404.  https://doi.org/10.1039/c4mt00339j CrossRefPubMedGoogle Scholar
  54. 54.
    Olivares D, Huang X, Branden L, Greig NH, Rogers JT (2009) Physiological and pathological role of alpha-synuclein in Parkinson’s disease through iron mediated oxidative stress; the role of a putative iron-responsive element. Int J Mol Sci 10(3):1226–1260.  https://doi.org/10.3390/ijms10031226 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Anderson JP, Walker DE, Goldstein JM, de Laat R, Banducci K, Caccavello RJ, Barbour R, Huang J, Kling K, Lee M, Diep L, Keim PS, Shen X, Chataway T, Schlossmacher MG, Seubert P, Schenk D, Sinha S, Gai WP, Chilcote TJ (2006) Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem 281(40):29739–29752.  https://doi.org/10.1074/jbc.M600933200 CrossRefPubMedGoogle Scholar
  56. 56.
    Kostka M, Hogen T, Danzer KM, Levin J, Habeck M, Wirth A, Wagner R, Glabe CG, Finger S, Heinzelmann U, Garidel P, Duan W, Ross CA, Kretzschmar H, Giese A (2008) Single particle characterization of iron-induced pore-forming alpha-synuclein oligomers. J Biol Chem 283(16):10992–11003.  https://doi.org/10.1074/jbc.M709634200 CrossRefPubMedGoogle Scholar
  57. 57.
    van Duijn S, Bulk M, van Duinen SG, Nabuurs RJA, van Buchem MA, van der Weerd L, Natté R (2017) Cortical iron reflects severity of Alzheimer’s disease. J Alzheimers Dis 60(4):1533–1545.  https://doi.org/10.3233/JAD-161143 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Szabo ST, Harry GJ, Hayden KM, Szabo DT, Birnbaum L (2016) Comparison of metal levels between postmortem brain and ventricular fluid in Alzheimer’s disease and nondemented elderly controls. Toxicol Sci 150(2):292–300.  https://doi.org/10.1093/toxsci/kfv325 CrossRefPubMedGoogle Scholar
  59. 59.
    Ashraf A, Clark M, So P-W (2018) The aging of iron man. Front Aging Neurosci 10:65.  https://doi.org/10.3389/fnagi.2018.00065 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Roberts BR, Ryan TM, Bush AI, Masters CL, Duce JA (2012) The role of metallobiology and amyloid-beta peptides in Alzheimer’s disease. J Neurochem 120(Suppl 1):149–166.  https://doi.org/10.1111/j.1471-4159.2011.07500.x CrossRefPubMedGoogle Scholar
  61. 61.
    Ott S, Dziadulewicz N, Crowther DC (2015) Iron is a specific cofactor for distinct oxidation- and aggregation-dependent Aβ toxicity mechanisms in a Drosophila model. Dis Models Mech 8(7):657–667.  https://doi.org/10.1242/dmm.019042 CrossRefGoogle Scholar
  62. 62.
    Ayton S, Lei P, Bush AI (2015) Biometals and their therapeutic implications in Alzheimer’s disease. Neurotherapeutics 12(1):109–120.  https://doi.org/10.1007/s13311-014-0312-z CrossRefPubMedGoogle Scholar
  63. 63.
    Maynard CJ, Bush AI, Masters CL, Cappai R, Li Q-X (2005) Metals and amyloid-β in Alzheimer’s disease. Int J Exp Pathol 86(3):147–159.  https://doi.org/10.1111/j.0959-9673.2005.00434.x CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kumar D, Ganeshpurkar A, Kumar D, Modi G, Gupta SK, Singh SK (2018) Secretase inhibitors for the treatment of Alzheimer’s disease: long road ahead. Eur J Med Chem 148:436–452.  https://doi.org/10.1016/j.ejmech.2018.02.035 CrossRefPubMedGoogle Scholar
  65. 65.
    Loeffler DA, Connor JR, Juneau PL, Snyder BS, Kanaley L, DeMaggio AJ, Nguyen H, Brickman CM, LeWitt PA (1995) Transferrin and iron in normal, Alzheimer’s disease, and Parkinson’s disease brain regions. J Neurochem 65(2):710–724CrossRefGoogle Scholar
  66. 66.
    Ayton S, Faux NG, Bush AI (2015) Ferritin levels in the cerebrospinal fluid predict Alzheimer’s disease outcomes and are regulated by APOE. Nat Commun 6:6760.  https://doi.org/10.1038/ncomms7760 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    White AR, Kanninen KM, Crouch PJ (2015) Editorial: metals and neurodegeneration: restoring the balance. Front Aging Neurosci 7:127.  https://doi.org/10.3389/fnagi.2015.00127 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Grasso G, Santoro AM, Lanza V, Sbardella D, Tundo GR, Ciaccio C, Marini S, Coletta M, Milardi D (2017) The double faced role of copper in Aβ homeostasis: a survey on the interrelationship between metal dyshomeostasis, UPS functioning and autophagy in neurodegeneration. Coord Chem Rev 347:1–22.  https://doi.org/10.1016/j.ccr.2017.06.004 CrossRefGoogle Scholar
  69. 69.
    Le W (2014) Role of iron in UPS impairment model of Parkinson’s disease. Parkinsonism Relat Disord 20(Suppl 1):S158–S161.  https://doi.org/10.1016/s1353-8020(13)70038-5 CrossRefPubMedGoogle Scholar
  70. 70.
    Li XP, Xie WJ, Zhang Z, Kansara S, Jankovic J, Le WD (2012) A mechanistic study of proteasome inhibition-induced iron misregulation in dopamine neuron degeneration. Neuro-Signals 20(4):223–236.  https://doi.org/10.1159/000332954 CrossRefPubMedGoogle Scholar
  71. 71.
    Li C, Biswas S, Li X, Dutta AK, Le W (2010) Novel D3 dopamine receptor-preferring agonist D-264: evidence of neuroprotective property in Parkinson’s disease animal models induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and lactacystin. J Neurosci Res 88(11):2513–2523.  https://doi.org/10.1002/jnr.22405 CrossRefPubMedGoogle Scholar
  72. 72.
    Santoro AM, Monaco I, Attanasio F, Lanza V, Pappalardo G, Tomasello MF, Cunsolo A, Rizzarelli E, De Luigi A, Salmona M, Milardi D (2016) Copper(II) ions affect the gating dynamics of the 20S proteasome: a molecular and in cell study. Sci Rep 6:33444.  https://doi.org/10.1038/srep33444 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Hatcher HC, Singh RN, Torti FM, Torti SV (2009) Synthetic and natural iron chelators: therapeutic potential and clinical use. Future Med Chem 1(9):1643–1670CrossRefGoogle Scholar
  74. 74.
    Cabantchik ZI, Munnich A, Youdim MB, Devos D (2013) Regional siderosis: a new challenge for iron chelation therapy. Front Pharmacol 4:167.  https://doi.org/10.3389/fphar.2013.00167 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Aouad F, Florence A, Zhang Y, Collins F, Henry C, Ward RJ, Crichton RR (2002) Evaluation of new iron chelators and their therapeutic potential. Inorg Chim Acta 339:470–480.  https://doi.org/10.1016/S0020-1693(02)01040-X CrossRefGoogle Scholar
  76. 76.
    Guo C, Hao LJ, Yang ZH, Chai R, Zhang S, Gu Y, Gao HL, Zhong ML, Wang T, Li JY, Wang ZY (2016) Deferoxamine-mediated up-regulation of HIF-1alpha prevents dopaminergic neuronal death via the activation of MAPK family proteins in MPTP-treated mice. Exp Neurol 280:13–23.  https://doi.org/10.1016/j.expneurol.2016.03.016 CrossRefPubMedGoogle Scholar
  77. 77.
    Sangchot P, Sharma S, Chetsawang B, Porter J, Govitrapong P, Ebadi M (2002) Deferoxamine attenuates iron-induced oxidative stress and prevents mitochondrial aggregation and alpha-synuclein translocation in SK-N-SH cells in culture. Dev Neurosci 24(2–3):143–153.  https://doi.org/10.1159/000065700 CrossRefPubMedGoogle Scholar
  78. 78.
    Harris ZL, Klomp L, Gitlin JD (1998) Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostasis. Am J Clin Nutr 67(5):972S–977SCrossRefGoogle Scholar
  79. 79.
    Devos D, Moreau C, Devedjian JC, Kluza J, Petrault M, Laloux C, Jonneaux A, Ryckewaert G, Garcon G, Rouaix N, Duhamel A, Jissendi P, Dujardin K, Auger F, Ravasi L, Hopes L, Grolez G, Firdaus W, Sablonniere B, Strubi-Vuillaume I, Zahr N, Destee A, Corvol JC, Poltl D, Leist M, Rose C, Defebvre L, Marchetti P, Cabantchik ZI, Bordet R (2014) Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid Redox Signal 21(2):195–210.  https://doi.org/10.1089/ars.2013.5593 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Jiang H, Luan Z, Wang J, Xie J (2006) Neuroprotective effects of iron chelator Desferal on dopaminergic neurons in the substantia nigra of rats with iron-overload. Neurochem Int 49(6):605–609.  https://doi.org/10.1016/j.neuint.2006.04.015 CrossRefPubMedGoogle Scholar
  81. 81.
    Hatcher HC, Singh RN, Torti FM, Torti SV (2009) Synthetic and natural iron chelators: therapeutic potential and clinical use. Future Med Chem 1(9):1643–1670.  https://doi.org/10.4155/fmc.09.121 CrossRefPubMedGoogle Scholar
  82. 82.
    Dusek P, Schneider SA, Aaseth J (2016) Iron chelation in the treatment of neurodegenerative diseases. J Trace Elem Med Biol 38:81–92CrossRefGoogle Scholar
  83. 83.
    Kalinowski DS, Richardson DR (2005) The evolution of iron chelators for the treatment of iron overload disease and cancer. Pharmacol Rev 57(4):547–583.  https://doi.org/10.1124/pr.57.4.2 CrossRefPubMedGoogle Scholar
  84. 84.
    Kattamis A, Kassou C, Berdousi H, Ladis V, Papassotiriou I, Kattamis C (2003) Combined therapy with desferrioxamine and deferiprone in thalassemic patients: effect on urinary iron excretion. Haematologica 88(12):1423–1425PubMedGoogle Scholar
  85. 85.
    Hider RC, Ma Y, Molina-Holgado F, Gaeta A, Roy S (2008) Iron chelation as a potential therapy for neurodegenerative disease. Portland Press Limited, LondonGoogle Scholar
  86. 86.
    Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Barnham KJ, Volitakis I, Fraser FW, Kim Y-S (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30(3):665–676CrossRefGoogle Scholar
  87. 87.
    Finkelstein DI, Hare DJ, Billings JL, Sedjahtera A, Nurjono M, Arthofer E, George S, Culvenor JG, Bush AI, Adlard PA (2016) Clioquinol improves cognitive, motor function, and microanatomy of the alpha-synuclein hA53T transgenic mice. ACS Chem Neurosci 7(1):119–129.  https://doi.org/10.1021/acschemneuro.5b00253 CrossRefPubMedGoogle Scholar
  88. 88.
    Kaur D, Yantiri F, Rajagopalan S, Kumar J, Mo JQ, Boonplueang R, Viswanath V, Jacobs R, Yang L, Beal MF, DiMonte D, Volitaskis I, Ellerby L, Cherny RA, Bush AI, Andersen JK (2003) Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson’s disease. Neuron 37(6):899–909CrossRefGoogle Scholar
  89. 89.
    Yassin MS, Ekblom J, Xilinas M, Gottfries CG, Oreland L (2000) Changes in uptake of vitamin B(12) and trace metals in brains of mice treated with clioquinol. J Neurol Sci 173(1):40–44CrossRefGoogle Scholar
  90. 90.
    Lei P, Ayton S, Finkelstein DI, Spoerri L, Ciccotosto GD, Wright DK, Wong BX, Adlard PA, Cherny RA, Lam LQ, Roberts BR, Volitakis I, Egan GF, McLean CA, Cappai R, Duce JA, Bush AI (2012) Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat Med 18(2):291–295.  https://doi.org/10.1038/nm.2613 CrossRefPubMedGoogle Scholar
  91. 91.
    Gozes I (2010) Tau pathology and future therapeutics. Curr Alzheimer Res 7(8):685–696CrossRefGoogle Scholar
  92. 92.
    Lei P, Ayton S, Appukuttan AT, Volitakis I, Adlard PA, Finkelstein DI, Bush AI (2015) Clioquinol rescues Parkinsonism and dementia phenotypes of the tau knockout mouse. Neurobiol Dis 81:168–175.  https://doi.org/10.1016/j.nbd.2015.03.015 CrossRefPubMedGoogle Scholar
  93. 93.
    Youdim MB, Fridkin M, Zheng H (2004) Novel bifunctional drugs targeting monoamine oxidase inhibition and iron chelation as an approach to neuroprotection in Parkinson’s disease and other neurodegenerative diseases. J Neural Transm (Vienna, Austria: 1996) 111(10–11):1455–1471.  https://doi.org/10.1007/s00702-004-0143-x CrossRefGoogle Scholar
  94. 94.
    Zheng H, Gal S, Weiner LM, Bar-Am O, Warshawsky A, Fridkin M, Youdim MB (2005) Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases: in vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition. J Neurochem 95(1):68–78.  https://doi.org/10.1111/j.1471-4159.2005.03340.x CrossRefPubMedGoogle Scholar
  95. 95.
    Youdim MB, Fridkin M, Zheng H (2005) Bifunctional drug derivatives of MAO-B inhibitor rasagiline and iron chelator VK-28 as a more effective approach to treatment of brain ageing and ageing neurodegenerative diseases. Mech Ageing Dev 126(2):317–326.  https://doi.org/10.1016/j.mad.2004.08.023 CrossRefPubMedGoogle Scholar
  96. 96.
    Youdim MB, Gross A, Finberg JP (2001) Rasagiline [N-propargyl-1R(+)-aminoindan], a selective and potent inhibitor of mitochondrial monoamine oxidase B. Br J Pharmacol 132(2):500–506.  https://doi.org/10.1038/sj.bjp.0703826 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Gal S, Zheng H, Fridkin M, Youdim MB (2005) Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases. In vivo selective brain monoamine oxidase inhibition and prevention of MPTP-induced striatal dopamine depletion. J Neurochem 95(1):79–88.  https://doi.org/10.1111/j.1471-4159.2005.03341.x CrossRefPubMedGoogle Scholar
  98. 98.
    Gal S, Fridkin M, Amit T, Zheng H, Youdim MB (2006) M30, a novel multifunctional neuroprotective drug with potent iron chelating and brain selective monoamine oxidase-ab inhibitory activity for Parkinson’s disease. J Neural Transm Suppl 70:447–456CrossRefGoogle Scholar
  99. 99.
    Gal S, Zheng H, Fridkin M, Youdim MB (2010) Restoration of nigrostriatal dopamine neurons in post-MPTP treatment by the novel multifunctional brain-permeable iron chelator-monoamine oxidase inhibitor drug, M30. Neurotox Res 17(1):15–27.  https://doi.org/10.1007/s12640-009-9070-9 CrossRefPubMedGoogle Scholar
  100. 100.
    Youdim MBH (2013) Multi target neuroprotective and neurorestorative anti-Parkinson and anti-Alzheimer drugs ladostigil and M30 derived from rasagiline. Exp Neurobiol 22(1):1–10.  https://doi.org/10.5607/en.2013.22.1.1 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Zheng H, Weiner LM, Bar-Am O, Epsztejn S, Cabantchik ZI, Warshawsky A, Youdim MB, Fridkin M (2005) Design, synthesis, and evaluation of novel bifunctional iron-chelators as potential agents for neuroprotection in Alzheimer’s, Parkinson’s, and other neurodegenerative diseases. Bioorg Med Chem 13(3):773–783CrossRefGoogle Scholar
  102. 102.
    Sampson EL, Jenagaratnam L, McShane R (2012) Metal protein attenuating compounds for the treatment of Alzheimer’s dementia. Cochrane Database Syst Rev 5:CD005380–CD005380.  https://doi.org/10.1002/14651858.CD005380.pub4 CrossRefPubMedCentralGoogle Scholar
  103. 103.
    Adlard PA, Cherny RA, Finkelstein DI, Gautier E, Robb E, Cortes M, Volitakis I, Liu X, Smith JP, Perez K (2008) Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Aβ. Neuron 59(1):43–55CrossRefGoogle Scholar
  104. 104.
    Lannfelt L, Blennow K, Zetterberg H, Batsman S, Ames D, Harrison J, Masters CL, Targum S, Bush AI, Murdoch R, Wilson J, Ritchie CW (2008) Safety, efficacy, and biomarker findings of PBT2 in targeting Abeta as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol 7(9):779–786.  https://doi.org/10.1016/s1474-4422(08)70167-4 CrossRefPubMedGoogle Scholar
  105. 105.
    Mena NP, García-Beltrán O, Lourido F, Urrutia PJ, Mena R, Castro-Castillo V, Cassels BK, Núñez MT (2015) The novel mitochondrial iron chelator 5-((methylamino) methyl)-8-hydroxyquinoline protects against mitochondrial-induced oxidative damage and neuronal death. Biochem Biophys Res Commun 463(4):787–792CrossRefGoogle Scholar
  106. 106.
    Santos MA, Marques SM, Chaves S (2012) Hydroxypyridinones as “privileged” chelating structures for the design of medicinal drugs. Coord Chem Rev 256(1):240–259CrossRefGoogle Scholar
  107. 107.
    Nunes A, Marques SM, Quintanova C, Silva DF, Cardoso SM, Chaves S, Santos MA (2013) Multifunctional iron-chelators with protective roles against neurodegenerative diseases. Dalton Trans 42(17):6058–6073CrossRefGoogle Scholar
  108. 108.
    Gaeta A, Molina-Holgado F, Kong XL, Salvage S, Fakih S, Francis PT, Williams RJ, Hider RC (2011) Synthesis, physical–chemical characterisation and biological evaluation of novel 2-amido-3-hydroxypyridin-4 (1H)-ones: iron chelators with the potential for treating Alzheimer’s disease. Bioorg Med Chem 19(3):1285–1297CrossRefGoogle Scholar
  109. 109.
    Zhou T, Ma Y, Kong X, Hider RC (2012) Design of iron chelators with therapeutic application. Dalton Trans (Cambridge, England: 2003) 41(21):6371–6389.  https://doi.org/10.1039/c2dt12159j CrossRefGoogle Scholar
  110. 110.
    Konetschny-Rapp S, Jung G, Raymond KN, Meiwes J, Zaehner H (1992) Solution thermodynamics of the ferric complexes of new desferrioxamine siderophores obtained by directed fermentation. J Am Chem Soc 114(6):2224–2230.  https://doi.org/10.1021/ja00032a043 CrossRefGoogle Scholar
  111. 111.
    Workman DG, Tsatsanis A, Lewis FW, Boyle JP, Mousadoust M, Hettiarachchi NT, Hunter M, Peers CS, Tétard D, Duce JA (2015) Protection from neurodegeneration in the 6-hydroxydopamine (6-OHDA) model of Parkinson’s with novel 1-hydroxypyridin-2-one metal chelators. Metallomics 7(5):867–876CrossRefGoogle Scholar
  112. 112.
    Ponka P, Borova J, Neuwirt J, Fuchs O (1979) Mobilization of iron from reticulocytes. Identification of pyridoxal isonicotinoyl hydrazone as a new iron chelating agent. FEBS Lett 97(2):317–321CrossRefGoogle Scholar
  113. 113.
    Richardson DR (2004) Novel chelators for central nervous system disorders that involve alterations in the metabolism of iron and other metal ions. Ann N Y Acad Sci 1012(1):326–341CrossRefGoogle Scholar
  114. 114.
    Perez CA, Tong Y, Guo M (2008) Iron chelators as potential therapeutic agents for Parkinson’s disease. Curr Bioact Compd 4(3):150–158CrossRefGoogle Scholar
  115. 115.
    Charkoudian LK, Pham DM, Franz KJ (2006) A pro-chelator triggered by hydrogen peroxide inhibits iron-promoted hydroxyl radical formation. J Am Chem Soc 128(38):12424–12425CrossRefGoogle Scholar
  116. 116.
    Wei Y, Guo M (2007) Hydrogen peroxide triggered prochelator activation, subsequent metal chelation, and attenuation of the fenton reaction. Angew Chem Int Ed 46(25):4722–4725CrossRefGoogle Scholar
  117. 117.
    Modi G, Voshavar C, Gogoi S, Shah M, Antonio T, Reith MEA, Dutta AK (2014) Multifunctional D2/D3 agonist D-520 with high in vivo efficacy: modulator of toxicity of alpha-synuclein aggregates. ACS Chem Neurosci 5(8):700–717.  https://doi.org/10.1021/cn500084x CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Yedlapudi D, Joshi GS, Luo D, Todi SV, Dutta AK (2016) Inhibition of alpha-synuclein aggregation by multifunctional dopamine agonists assessed by a novel in vitro assay and an in vivo Drosophila synucleinopathy model. Sci Rep 6:38510.  https://doi.org/10.1038/srep38510 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Shah M, Rajagopalan S, Xu L, Voshavar C, Shurubor Y, Beal F, Andersen JK, Dutta AK (2014) The high-affinity D2/D3 agonist D512 protects PC12 cells from 6-OHDA-induced apoptotic cell death and rescues dopaminergic neurons in the MPTP mouse model of Parkinson’s disease. J Neurochem 131(1):74–85.  https://doi.org/10.1111/jnc.12767 CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Santra S, Xu L, Shah M, Johnson M, Dutta A (2013) D-512 and D-440 as novel multifunctional dopamine agonists: characterization of neuroprotection properties and evaluation of in vivo efficacy in a Parkinson’s disease animal model. ACS Chem Neurosci 4(10):1382–1392.  https://doi.org/10.1021/cn400106n CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Johnson M, Antonio T, Reith MEA, Dutta AK (2012) Structure-activity-relationship study of N(6)-(2(4-(1H-indol-5-yl)piperazin-1-yl)ethyl)-N(6)-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine analogues: development of highly selective D3 dopamine receptor agonists along with a highly potent D2/D3 agonist and their pharmacological characterization. J Med Chem 55(12):5826–5840.  https://doi.org/10.1021/jm300268s CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Ghosh B, Antonio T, Zhen J, Kharkar P, Reith MEA, Dutta AK (2010) Development of (S)-N(6)-(2-(4-(Isoquinolin-1-yl)piperazin-1-yl)ethyl)-N(6)-propyl-4,5,6,7-tetrahydrobenzo[d]-thiazole-2,6-diamine and its analogue as a D3 receptor preferring agonist: potent in vivo activity in Parkinson’s disease animal models. J Med Chem 53(3):1023.  https://doi.org/10.1021/jm901184n CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Ghosh B, Antonio T, Reith MEA, Dutta AK (2010) Discovery of 4-(4-(2-((5-hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl)(propyl)amino)-ethyl)piperazin-1-yl)quinolin-8-ol and its analogues as highly potent dopamine D2/D3 agonists and as iron chelator: in vivo activity indicates potential application in symptomatic and neuroprotective therapy for Parkinson’s Disease. J Med Chem 53(5):2114–2125.  https://doi.org/10.1021/jm901618d CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Gogoi S, Antonio T, Rajagopalan S, Reith M, Andersen J, Dutta AK (2011) Dopamine D(2)/D(3) agonists with potent iron chelation, antioxidant and neuroprotective properties: potential implication in symptomatic and neuroprotective treatment of Parkinson’s disease. ChemMedChem 6(6):991–995.  https://doi.org/10.1002/cmdc.201100140 CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Das B, Kandegedara A, Xu L, Antonio T, Stemmler T, Reith MEA, Dutta AK (2017) A novel iron(II) preferring dopamine agonist chelator as potential symptomatic and neuroprotective therapeutic agent for Parkinson’s disease. ACS Chem Neurosci 8(4):723–730.  https://doi.org/10.1021/acschemneuro.6b00356 CrossRefPubMedGoogle Scholar
  126. 126.
    Ramassamy C (2006) Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. Eur J Pharmacol 545(1):51–64.  https://doi.org/10.1016/j.ejphar.2006.06.025 CrossRefPubMedGoogle Scholar
  127. 127.
    Kelsey NA, Wilkins HM, Linseman DA (2010) Nutraceutical antioxidants as novel neuroprotective agents. Molecules 15(11):7792–7814CrossRefGoogle Scholar
  128. 128.
    Guo M, Perez C, Wei Y, Rapoza E, Su G, Bou-Abdallah F, Chasteen ND (2007) Iron-binding properties of plant phenolics and cranberry’s bio-effects. Dalton Trans (Cambridge, England: 2003) 43:4951–4961.  https://doi.org/10.1039/b705136k CrossRefGoogle Scholar
  129. 129.
    Cherrak SA, Mokhtari-Soulimane N, Berroukeche F, Bensenane B, Cherbonnel A, Merzouk H, Elhabiri M (2016) In vitro antioxidant versus metal ion chelating properties of flavonoids: a structure-activity investigation. PLoS ONE 11(10):e0165575.  https://doi.org/10.1371/journal.pone.0165575 CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Weinreb O, Mandel S, Youdim MB, Amit T (2013) Targeting dysregulation of brain iron homeostasis in Parkinson’s disease by iron chelators. Free Radic Biol Med 62:52–64.  https://doi.org/10.1016/j.freeradbiomed.2013.01.017 CrossRefPubMedGoogle Scholar
  131. 131.
    Mähler A, Mandel S, Lorenz M, Ruegg U, Wanker EE, Boschmann M, Paul F (2013) Epigallocatechin-3-gallate: a useful, effective and safe clinical approach for targeted prevention and individualised treatment of neurological diseases? EPMA J 4(1):5–5.  https://doi.org/10.1186/1878-5085-4-5 CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Chan S, Kantham S, Rao VM, Palanivelu MK, Pham HL, Shaw PN, McGeary RP, Ross BP (2016) Metal chelation, radical scavenging and inhibition of Abeta(4)(2) fibrillation by food constituents in relation to Alzheimer’s disease. Food Chem 199:185–194.  https://doi.org/10.1016/j.foodchem.2015.11.118 CrossRefPubMedGoogle Scholar
  133. 133.
    Singh NA, Mandal AK, Khan ZA (2016) Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr J 15(1):60.  https://doi.org/10.1186/s12937-016-0179-4 CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Chen D, Kanthasamy AG, Reddy MB (2015) EGCG protects against 6-OHDA-induced neurotoxicity in a cell culture model. Parkinson’s Dis 2015:843906.  https://doi.org/10.1155/2015/843906 CrossRefGoogle Scholar
  135. 135.
    Lesjak M, Hoque R, Balesaria S, Skinner V, Debnam ES, Srai SK, Sharp PA (2014) Quercetin inhibits intestinal iron absorption and ferroportin transporter expression in vivo and in vitro. PLoS ONE 9(7):e102900.  https://doi.org/10.1371/journal.pone.0102900 CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Leopoldini M, Russo N, Chiodo S, Toscano M (2006) Iron chelation by the powerful antioxidant flavonoid quercetin. J Agric Food Chem 54(17):6343–6351.  https://doi.org/10.1021/jf060986h CrossRefPubMedGoogle Scholar
  137. 137.
    Costa LG, Garrick JM, Roque PJ, Pellacani C (2016) Mechanisms of neuroprotection by quercetin: counteracting oxidative stress and more. Oxid Med Cell Longev 2016:2986796.  https://doi.org/10.1155/2016/2986796 CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Horniblow RD, Henesy D, Iqbal TH, Tselepis C (2017) Modulation of iron transport, metabolism and reactive oxygen status by quercetin-iron complexes in vitro. Mol Nutr Food Res.  https://doi.org/10.1002/mnfr.201600692 CrossRefPubMedGoogle Scholar
  139. 139.
    Singh PK, Kotia V, Ghosh D, Mohite GM, Kumar A, Maji SK (2013) Curcumin modulates alpha-synuclein aggregation and toxicity. ACS Chem Neurosci 4(3):393–407.  https://doi.org/10.1021/cn3001203 CrossRefPubMedGoogle Scholar
  140. 140.
    Spinelli KJ, Osterberg VR, Meshul CK, Soumyanath A, Unni VK (2015) Curcumin treatment improves motor behavior in alpha-synuclein transgenic mice. PLoS ONE 10(6):e0128510.  https://doi.org/10.1371/journal.pone.0128510 CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Gupta SC, Prasad S, Kim JH, Patchva S, Webb LJ, Priyadarsini IK, Aggarwal BB (2011) Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep 28(12):1937–1955.  https://doi.org/10.1039/c1np00051a CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Dai MC, Zhong ZH, Sun YH, Sun QF, Wang YT, Yang GY, Bian LG (2013) Curcumin protects against iron induced neurotoxicity in primary cortical neurons by attenuating necroptosis. Neurosci Lett 536:41–46.  https://doi.org/10.1016/j.neulet.2013.01.007 CrossRefPubMedGoogle Scholar
  143. 143.
    Baum L, Ng A (2004) Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. JAD 6(4):367–377 (discussion 443–369)CrossRefGoogle Scholar
  144. 144.
    Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA (2017) The essential medicinal chemistry of curcumin. J Med Chem 60(5):1620–1637.  https://doi.org/10.1021/acs.jmedchem.6b00975 CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Lu P, Mamiya T, Lu LL, Mouri A, Zou L, Nagai T, Hiramatsu M, Ikejima T, Nabeshima T (2009) Silibinin prevents amyloid beta peptide-induced memory impairment and oxidative stress in mice. Br J Pharmacol 157(7):1270–1277.  https://doi.org/10.1111/j.1476-5381.2009.00295.x CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Borsari M, Gabbi C, Ghelfi F, Grandi R, Saladini M, Severi S, Borella F (2001) Silybin, a new iron-chelating agent. J Inorg Biochem 85(2–3):123–129CrossRefGoogle Scholar
  147. 147.
    Sciacca MFM, Romanucci V, Zarrelli A, Monaco I, Lolicato F, Spinella N, Galati C, Grasso G, D’Urso L, Romeo M, Diomede L, Salmona M, Bongiorno C, Di Fabio G, La Rosa C, Milardi D (2017) Inhibition of abeta amyloid growth and toxicity by silybins: the crucial role of stereochemistry. ACS Chem Neurosci 8(8):1767–1778.  https://doi.org/10.1021/acschemneuro.7b00110 CrossRefPubMedGoogle Scholar
  148. 148.
    Zou H, Zhu XX, Zhang GB, Ma Y, Wu Y, Huang DS (2017) Silibinin: an old drug for hematological disorders. Oncotarget 8(51):89307–89314.  https://doi.org/10.18632/oncotarget.19153 CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Hegde ML, Bharathi P, Suram A, Venugopal C, Jagannathan R, Poddar P, Srinivas P, Sambamurti K, Rao KJ, Scancar J, Messori L, Zecca L, Zatta P (2009) Challenges associated with metal chelation therapy in Alzheimer’s disease. JAD 17(3):457–468.  https://doi.org/10.3233/JAD-2009-1068 CrossRefPubMedGoogle Scholar
  150. 150.
    Saraiva C, Praca C, Ferreira R, Santos T, Ferreira L, Bernardino L (2016) Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release 235:34–47.  https://doi.org/10.1016/j.jconrel.2016.05.044 CrossRefPubMedGoogle Scholar
  151. 151.
    Wang N, Jin X, Guo D, Tong G, Zhu X (2017) Iron chelation nanoparticles with delayed saturation as an effective therapy for Parkinson disease. Biomacromol 18(2):461–474.  https://doi.org/10.1021/acs.biomac.6b01547 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yash Pal Singh
    • 1
  • Amruta Pandey
    • 1
  • Swati Vishwakarma
    • 1
  • Gyan Modi
    • 1
  1. 1.Department of Pharmaceutical Engineering & TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia

Personalised recommendations