Advertisement

In silico prediction of prolactin molecules as a tool for equine genomics reproduction

  • A. Neis
  • F. S. Kremer
  • L. S. Pinto
  • P. M. M. LeonEmail author
Short Communication
  • 1 Downloads

Abstract

The prolactin hormone is involved in several biological functions, although its main role resides on reproduction. As it interferes on fertility changes, studies focused on human health have established a linkage of this hormone to fertility losses. Regarding animal research, there is still a lack of information about the structure of prolactin. In case of horse breeding, prolactin has a particular influence; once there is an individualization of these animals and equines are known for presenting several reproductive disorders. As there is no molecular structure available for the prolactin hormone and receptor, we performed several bioinformatics analyses through prediction and refinement softwares, as well as manual modifications. Aiming to elucidate the first computational structure of both molecules and analyse structural and functional aspects related to these proteins, here we provide the first known equine model for prolactin and prolactin receptor, which obtained high global quality scores in diverse software’s for quality assessment. QMEAN overall score obtained for ePrl was (− 4.09) and QMEANbrane for ePrlr was (− 8.45), which proves the structures’ reliability. This study will implement another tool in equine genomics in order to give light to interactions of these molecules, structural and functional alterations and therefore help diagnosing fertility problems, contributing in the selection of a high genetic herd.

Graphical abstract

Keywords

Mares Infertility PRL PRLR Bioinformatics 

Notes

Acknowledgements

The authors declare there was no conflict of interest. This project was developed by a Biotechnology undergraduate student through supporting scholarship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). FSK is student of the Graduate Program in Biotechnology at Universidade Federal de Pelotas also supported by CNPQ.

Supplementary material

11030_2018_9914_MOESM1_ESM.tif (125 kb)
Online Resource 1 QMEAN graphical result for ePrl local quality estimation. The predicted model is closer to score 1, the greater similarity to the database and correctly positioned residues (TIFF 125 kb)
11030_2018_9914_MOESM2_ESM.tif (199 kb)
Online Resource 2 QMEANbrane result for ePrlr. The structure is within the expected range for TM proteins (TIFF 199 kb)
11030_2018_9914_MOESM3_ESM.tif (364 kb)
Online Resource 3 Graphical results for quality estimate of the predicted models obtained in ProQ2 for equine prolactin (ePrl) global quality. (A) Plot representation before refinement tools were implied and (B), after. Scores closer to 1 represent an ideal model (TIFF 364 kb)
11030_2018_9914_MOESM4_ESM.tif (780 kb)
Online Resource 4 Graphical results for quality estimate of the predicted models obtained in ProQ2 for equine prolactin receptor (ePrlr) global quality. (A) Plot representation before refinement tools were implied and (B), after. Scores closer to 1 represent an ideal model (TIFF 780 kb)
11030_2018_9914_MOESM5_ESM.tif (1.2 mb)
Online Resource 5 PsiPred specific residue quality for ePrl. Blue bars shows the confidence of the secondary structure prediction (TIFF 1194 kb)
11030_2018_9914_MOESM6_ESM.pdb (263 kb)
Online Resource 6 PsiPred confidence of secondary structure prediction for ePrlr. Blue bars shows the confidence of the secondary structure prediction (PDB 263 kb)
11030_2018_9914_MOESM7_ESM.pdb (380 kb)
Online Resource 7 Secondary structure comparison in PyMol Molecular Graphics with PDB-available models for (A,B) Prl: Equine Prl (red); 1RW5: human prolactin (blue); 3NPZ: rat prolactin (green). (C) Extracellular and transmembrane domains of different Prlr. Equine Prlr (red); 3NPZ: human prolactin receptor (green); 1BP3: human prolactin receptor (magenta); 3MGZ: human prolactin receptor (dark gray); 2NTI: human transmembrane domain (yellow); 3EW3: rat prolactin receptor (blue) (PDB 379 kb)
11030_2018_9914_MOESM8_ESM.pdb (263 kb)
Online Resource 8 PDB structure for ePRL (PDB 263 kb)
11030_2018_9914_MOESM9_ESM.pdb (380 kb)
Online Resource 9 PDB structure for ePRLR (PDB 379 kb)

References

  1. 1.
    Bole-Feysot C, Goffin V, Edery M et al (1998) Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 19:225–268.  https://doi.org/10.1210/edrv.19.3.0334 CrossRefGoogle Scholar
  2. 2.
    Goffin V, Kinet S, Ferrag F et al (1996) Antagonistic properties of human prolactin analogs that show paradoxical agonistic activity in the Nb2 bioassay. J Biol Chem 271:16573–16579CrossRefGoogle Scholar
  3. 3.
    Freeman ME, Kanyicska B, Lerant A, Nagy G (2000) Prolactin: structure, function, and regulation of secretion. Physiol Rev 80:1523–1631CrossRefGoogle Scholar
  4. 4.
    Ormandy CJ, Camus A, Barra J et al (1997) Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev 11:167–178CrossRefGoogle Scholar
  5. 5.
    Newey PJ, Phil D, Gorvin CM et al (2013) Mutant prolactin receptor and familial hyperprolactinemia. N Engl J Med 369:2012–2020.  https://doi.org/10.1056/NEJMoa1307557 CrossRefGoogle Scholar
  6. 6.
    Sonigo C, Bouilly J, Carré N et al (2012) Hyperprolactinemia-induced ovarian acyclicity is reversed by kisspeptin administration. J Clin Invest 122:3791–3795.  https://doi.org/10.1172/JCI63937 CrossRefGoogle Scholar
  7. 7.
    Giesecke K, Hamann H, Sieme H, Distl O (2010) Evaluation of prolactin receptor (prlr) as candidate gene for male fertility in hanoverian warmblood horses. Reprod Domest Anim 45:124–130.  https://doi.org/10.1111/j.1439-0531.2009.01533.x CrossRefGoogle Scholar
  8. 8.
    Thompson DL, Oberhaus EL (2015) Prolactin in the horse: historical perspective, actions and reactions, and its role in reproduction. J Equine Vet Sci 35:343–353.  https://doi.org/10.1016/j.jevs.2015.03.199 CrossRefGoogle Scholar
  9. 9.
    Bugge K, Papaleo E, Haxholm GW et al (2016) A combined computational and structural model of the full-length human prolactin receptor. Nat Commun 7:1–11.  https://doi.org/10.1038/ncomms11578 CrossRefGoogle Scholar
  10. 10.
    Broutin I, Jomain JB, Tallet E et al (2010) Crystal structure of an affinity-matured prolactin complexed to its dimerized receptor reveals the topology of hormone binding site 2. J Biol Chem 285:8422–8433.  https://doi.org/10.1074/jbc.M109.089128 CrossRefGoogle Scholar
  11. 11.
    van Agthoven J, Zhang C, Tallet E et al (2010) Structural characterization of the stem-stem dimerization interface between prolactin receptor chains complexed with the natural hormone. J Mol Biol 404:112–126.  https://doi.org/10.1016/j.jmb.2010.09.036 CrossRefGoogle Scholar
  12. 12.
    Teilum K, Hoch JC, Goffin V et al (2005) Solution structure of human prolactin. J Mol Biol 351:810–823.  https://doi.org/10.1016/j.jmb.2005.06.042 CrossRefGoogle Scholar
  13. 13.
    Apweiler R, Bairoch A, Wu CH et al (2004) UniProt: the universal protein knowledgebase. Nucleic Acids Res 32:D115–D119.  https://doi.org/10.1093/nar/gkh131 CrossRefGoogle Scholar
  14. 14.
    Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738.  https://doi.org/10.1038/nprot.2010.5 CrossRefGoogle Scholar
  15. 15.
    Xu D, Jaroszewski L, Li Z, Godzik A (2014) AIDA: ab initio domain assembly server. Nucleic Acids Res 42:W308–W313.  https://doi.org/10.1093/nar/gku369 CrossRefGoogle Scholar
  16. 16.
    Xu D, Zhang J, Roy A, Zhang Y (2011) Automated protein structure modeling in CASP9 by I-TASSER pipeline combined with QUARK-based ab initio folding and FG-MD-based structure refinement. Proteins.  https://doi.org/10.1002/prot.23111 Google Scholar
  17. 17.
    Fiser A, Sali A (2003) ModLoop: automated modeling of loops in protein structures. Bioinform Appl NOTE 19:2500–2501.  https://doi.org/10.1093/bioinformatics/btg362 CrossRefGoogle Scholar
  18. 18.
    Maghrabi AHA, McGuffin LJ (2017) ModFOLD6: an accurate web server for the global and local quality estimation of 3D protein models. Nucleic Acids Res 45:W416–W421.  https://doi.org/10.1093/nar/gkx332 CrossRefGoogle Scholar
  19. 19.
    Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27:343–350.  https://doi.org/10.1093/bioinformatics/btq662 CrossRefGoogle Scholar
  20. 20.
    Studer G, Biasini M, Schwede T (2014) Assessing the local structural quality of transmembrane protein models using statistical potentials (QMEANBrane). Bioinformatics 30:i505–i511.  https://doi.org/10.1093/bioinformatics/btu457 CrossRefGoogle Scholar
  21. 21.
    Batut P, Gingeras TR (2013) RAMPAGE: promoter activity profiling by paired-end sequencing of 5’-complete cDNAs. Curr Protoc Mol Biol 104:Unit 25B.11.  https://doi.org/10.1002/0471142727.mb25b11s104 Google Scholar
  22. 22.
    Zhou H, Zhou Y (2002) Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci 11:2714–2726.  https://doi.org/10.1110/ps.0217002 CrossRefGoogle Scholar
  23. 23.
    Yang Y, Zhou Y (2008) Specific interactions for ab initio folding of protein terminal regions with secondary structures. Proteins 72:793–803.  https://doi.org/10.1002/prot.21968 CrossRefGoogle Scholar
  24. 24.
    Holm L, Sander C (1992) Evaluation of protein models by atomic solvation preference. J Mol Biol 225:93–105CrossRefGoogle Scholar
  25. 25.
    Ray A, Lindahl E, Orn Wallner B (2012) Improved model quality assessment using ProQ2. BMC Bioinform 13:1–12.  https://doi.org/10.1186/1471-2105-13-224 CrossRefGoogle Scholar
  26. 26.
    McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405CrossRefGoogle Scholar
  27. 27.
    Jiménez-García B, Pons C, Fernández-Recio J (2013) pyDockWEB: a web server for rigid-body protein–protein docking using electrostatics and desolvation scoring. Bioinformatics 29:1698–1699.  https://doi.org/10.1093/bioinformatics/btt262 CrossRefGoogle Scholar
  28. 28.
    Chenna R, Sugawara H, Koike T et al (2003) Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31:3497–3500CrossRefGoogle Scholar
  29. 29.
    Zhang Y (2009) Protein structure prediction: when is it useful? Curr Opin Struct Biol 19:145–155.  https://doi.org/10.1016/j.sbi.2009.02.005 CrossRefGoogle Scholar
  30. 30.
    Read RJ, Chavali G (2007) Assessment of CASP7 predictions in the high accuracy template-based modeling category. Proteins 69(Suppl 8):27–37.  https://doi.org/10.1002/prot.21662 CrossRefGoogle Scholar
  31. 31.
    Du H, Brender JR, Zhang J, Zhang Y (2015) Protein structure prediction provides comparable performance to crystallographic structures in docking-based virtual screening. Methods 71:77–84.  https://doi.org/10.1016/j.ymeth.2014.08.017 CrossRefGoogle Scholar
  32. 32.
    Yang J, Zhang W, He B et al (2016) Template-based protein structure prediction in CASP11 and retrospect of I-TASSER in the last decade. Proteins 84(Suppl 1):233–246.  https://doi.org/10.1002/prot.24918 CrossRefGoogle Scholar
  33. 33.
    Zhang J, Liang Y, Zhang Y (2011) Atomic-level protein structure refinement using fragment-guided molecular dynamics conformation sampling. Structure 19:1784–1795.  https://doi.org/10.1016/j.str.2011.09.022 CrossRefGoogle Scholar
  34. 34.
    Kryshtafovych A, Monastyrskyy B, Fidelis K et al (2018) Assessment of model accuracy estimations in CASP12. Proteins Struct Funct Bioinform 86:345–360.  https://doi.org/10.1002/prot.25371 CrossRefGoogle Scholar
  35. 35.
    Uziela K, Wallner B (2016) ProQ2: estimation of model accuracy implemented in Rosetta. Bioinformatics 32:1411–1413.  https://doi.org/10.1093/bioinformatics/btv767 CrossRefGoogle Scholar
  36. 36.
    Koehler Leman J, Ulmschneider MB, Gray JJ (2015) Computational modeling of membrane proteins. Proteins 83:1–24.  https://doi.org/10.1002/prot.24703 CrossRefGoogle Scholar
  37. 37.
    Almeida JG, Preto AJ, Koukos PI et al (2017) Membrane proteins structures: a review on computational modeling tools. Biochim Biophys Acta Biomembr 1859:2021–2039.  https://doi.org/10.1016/j.bbamem.2017.07.008 CrossRefGoogle Scholar
  38. 38.
    Kashani-Amin E, Tabatabaei-Malazy O, Sakhteman A et al (2018) A systematic review on popularity, application and characteristics of protein secondary structure prediction tools. Curr Drug Discov Technol 10:15.  https://doi.org/10.2174/1570163815666180227162157 Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Grupo de Pesquisa em Genômica de Equinos - GenE, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Campus UniversitárioUniversidade Federal de PelotasPelotasBrazil
  2. 2.Laboratório de Bioinformática e Proteômica, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Campus UniversitárioUniversidade Federal de PelotasPelotasBrazil

Personalised recommendations