Advertisement

Synthesis, antioxidant activity and SAR study of novel spiro-isatin-based Schiff bases

  • Fatih SonmezEmail author
  • Zuhal Gunesli
  • Belma Zengin Kurt
  • Isil Gazioglu
  • Davut Avci
  • Mustafa Kucukislamoglu
Original Article

Abstract

A new series of 21 Schiff bases of spiro-isatin was synthesized, and their DPPH, CUPRAC and ABTS cation radical scavenging abilities were investigated for antioxidant activity. The results showed that all the synthesized compounds exhibited antioxidant activity for each assay. 5̍-(2,3-Dihydroxybenzylideneamino)spiro[[1,3] dioxolane-2,3̍-indoline]-2̍-on (5c) (IC50 = 4.49 µM, for DPPH; IC50 = 0.39 µM, for ABTS.+; and A0.50 = 0.42 µM, for CUPRAC) showed significantly better ABTS, CUPRAC and DPPH radical scavenging ability than quercetin (IC50 = 8.69 µM, for DPPH; IC50 = 15.49 µM, for ABTS.+; and A0.50 = 18.47 µM, for CUPRAC), which is used as a standard. SAR study showed that the synthesized compounds had higher ABTS.+ activity than DPPH and CUPRAC activities. Moreover, the compounds (5c and 5d), containing two hydroxyl groups, exhibited the highest antioxidant activities for all assays. Quantum chemical calculations were also carried out to support SAR results.

Graphical abstract

Keywords

ABTS Antioxidant activity CUPRAC DPPH Isatin Schiff base 

Notes

Acknowledgements

This work was supported by the Sakarya Research Fund of the Sakarya University (Project Number: 2014-50-01-036).

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflict of interest.

Supplementary material

11030_2018_9910_MOESM1_ESM.pdf (2 mb)
Supplementary material 1 (PDF 2041 kb)

References

  1. 1.
    Pisoschi AM, Pop A (2015) The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem 97:55–74.  https://doi.org/10.1016/j.ejmech.2015.04.040 CrossRefGoogle Scholar
  2. 2.
    Lozynskyi A, Zasidko V et al (2017) Synthesis, antioxidant and antimicrobial activities of novel thiopyrano[2,3-d]thiazoles based on aroylacrylic acids. Mol Divers 21:427–436.  https://doi.org/10.1007/s11030-017-9737-8 CrossRefGoogle Scholar
  3. 3.
    Dai Y, Shao C et al (2017) The mechanism for cleavage of three typical glucosidic bonds induced by hydroxyl free radical. Carbohydr Polym 178:34–40.  https://doi.org/10.1016/j.carbpol.2017.09.016 CrossRefGoogle Scholar
  4. 4.
    Mason RP (2016) Imaging free radicals in organelles, cells, tissue, and in vivo with immuno-spin trapping. Redox Biol 8:422–429.  https://doi.org/10.1016/j.redox.2016.04.003 CrossRefGoogle Scholar
  5. 5.
    Trinity JD, Broxterman RM, Richardson RS (2016) Regulation of exercise blood flow: role of free radicals. Free Radic Biol Med 98:90–102.  https://doi.org/10.1016/j.freeradbiomed.2016.01.017 CrossRefGoogle Scholar
  6. 6.
    Razzaq H, Saira F et al (2016) Interaction of gold nanoparticles with free radicals and their role in enhancing the scavenging activity of ascorbic acid. J Photochem Photobiol, B 161:266–272.  https://doi.org/10.1016/j.jphotobiol.2016.04.003 CrossRefGoogle Scholar
  7. 7.
    Si W, Chen YP et al (2018) Antioxidant activities of ginger extract and its constituents toward lipids. Food Chem 239:1117–1125.  https://doi.org/10.1016/j.foodchem.2017.07.055 CrossRefGoogle Scholar
  8. 8.
    Bentz EN, Pomilio AB, Lobayan RM (2017) Donor-acceptor interactions as descriptors of the free radical scavenging ability of flavans and catechin. Comput Theor Chem 1110:14–24.  https://doi.org/10.1016/j.comptc.2017.03.028 CrossRefGoogle Scholar
  9. 9.
    Komeri R, Thankam FG, Muthu J (2017) Free radical scavenging injectable hydrogels for regenerative therapy. Mater Sci Eng C-Mater 71:100–110.  https://doi.org/10.1016/j.msec.2016.09.087 CrossRefGoogle Scholar
  10. 10.
    Sridharan M, Prasad KJR et al (2016) Application of UV-Vis spectrophotometric process for the assessment of indoloacridines as free radical scavenger. J Photochem Photobiol, B 162:641–645.  https://doi.org/10.1016/j.jphotobiol.2016.07.026 CrossRefGoogle Scholar
  11. 11.
    Sivaguru P, Parameswaran K, Lalitha A (2017) Antioxidant, anticancer and electrochemical redox properties of new bis(2,3-dihydroquinazolin-4(1H)-one) derivatives. Mol Divers 21:611–620.  https://doi.org/10.1007/s11030-017-9748-5 CrossRefGoogle Scholar
  12. 12.
    Giorno TBS, Silva BVD et al (2016) Antinociceptive effect and mechanism of action of isatin, N-methyl isatin and oxopropyl isatin in mice. Life Sci 151:189–198.  https://doi.org/10.1016/j.lfs.2016.02.052 CrossRefGoogle Scholar
  13. 13.
    Ugale V, Patel H et al (2017) Benzofurano-isatins: search for antimicrobial agents. Arab J Chem 10:S389–S396.  https://doi.org/10.1016/j.arabjc.2012.09.011 CrossRefGoogle Scholar
  14. 14.
    Pavlovska TL, Redkin RG et al (2016) Molecular diversity of spirooxindoles. Synthesis and biological activity. Mol Divers 20:299–344.  https://doi.org/10.1007/s11030-015-9629-8 CrossRefGoogle Scholar
  15. 15.
    Gazieva GA, Izmestev AN et al (2018) The influence of substituents on the reactivity and cytotoxicity of imidazothiazolotriazinones. Mol Divers 22:585–589.  https://doi.org/10.1007/s11030-018-9813-8 CrossRefGoogle Scholar
  16. 16.
    Justo LA, Duran R et al (2016) Effects and mechanism of action of isatin, a MAO inhibitor, on in vivo striatal dopamine release. Neurochem Int 99:147–157.  https://doi.org/10.1016/j.neuint.2016.06.012 CrossRefGoogle Scholar
  17. 17.
    Xu Z, Zhang S et al (2017) Design, synthesis and in vitro anti-mycobacterial evaluation of gatifloxacin-1H-1,2,3-triazole-isatin hybrids. Bioorg Med Chem Lett 27(16):3643–3646.  https://doi.org/10.1016/j.bmcl.2017.07.023 CrossRefGoogle Scholar
  18. 18.
    Wang G, Chen M et al (2018) Synthesis, in vitro alpha-glucosidase inhibitory activity and docking studies of novel chromone-isatin derivatives. Bioorg Med Chem Lett 28(2):113–116.  https://doi.org/10.1016/j.bmcl.2017.11.047 CrossRefGoogle Scholar
  19. 19.
    Singh H, Singh JV et al (2017) Triazole tethered isatin-coumarin based molecular hybrids as novel antitubulin agents: design, synthesis, biological investigation and docking studies. Bioorg Med Chem Lett 27(17):3974–3979.  https://doi.org/10.1016/j.bmcl.2017.07.069 CrossRefGoogle Scholar
  20. 20.
    Ibrahim HS, Abou-seri SM et al (2016) Bis-isatin hydrazones with novel linkers: synthesis and biological evaluation as cytotoxic agents. Eur J Med Chem 108:415–422.  https://doi.org/10.1016/j.ejmech.2015.11.047 CrossRefGoogle Scholar
  21. 21.
    Wang J, Yun D et al (2017) Design, synthesis and QSAR study of novel isatin analogues inspired Michael acceptor as potential anticancer compounds. Eur J Med Chem 144:493–503.  https://doi.org/10.1016/j.ejmech.2017.12.043 CrossRefGoogle Scholar
  22. 22.
    Kausar N, Masum AA et al (2017) A green synthetic approach toward the synthesis of structurally diverse spirooxindole derivative libraries under catalyst-free conditions. Mol Divers 21:325–337.  https://doi.org/10.1007/s11030-017-9728-9 CrossRefGoogle Scholar
  23. 23.
    Andreani A, Burnelli S et al (2010) New isatin derivatives with antioxidant activity. Eur J Med Chem 45:1374–1378.  https://doi.org/10.1016/j.ejmech.2009.12.035 CrossRefGoogle Scholar
  24. 24.
    Lucarini M, Pedrielli P et al (1999) Bond dissociation energies of the N–H bond and rate constants for the reaction with alkyl, alkoxyl, and peroxyl radicals of phenothiazines and related compounds. J Am Chem Soc 121:11546–11553.  https://doi.org/10.1021/ja992904u CrossRefGoogle Scholar
  25. 25.
    Pakravan P, Kashanian S et al (2013) Biochemical and pharmacological characterization of isatin and its derivatives: from structure to activity. Pharmacol Rep 65:313–335.  https://doi.org/10.1016/S1734-1140(13)71007-7 CrossRefGoogle Scholar
  26. 26.
    Visagaperumal D, Ezekwem JE et al (2018) Isatin schiff base-an overview. PharmaTutor 6:38–47.  https://doi.org/10.29161/PT.v6.i5.2018.38 CrossRefGoogle Scholar
  27. 27.
    Ghosh S, Roy N et al (2018) Photophysics of a coumarin based schiff base in solvents of varying polarities. Spectrochim Acta A 188:252–257.  https://doi.org/10.1016/j.saa.2017.07.006 CrossRefGoogle Scholar
  28. 28.
    Xia L, Xia YF et al (2015) Benzaldehyde Schiff bases regulation to the metabolism, hemolysis, and virulence genes expression in vitro and their structure-microbicidal activity relationship. Eur J Med Chem 97:83–93.  https://doi.org/10.1016/j.ejmech.2015.04.042 CrossRefGoogle Scholar
  29. 29.
    Gencer N, Sonmez F et al (2014) Synthesis, structure-activity relationships and biological activity of new isatin derivatives as tyrosinase inhibitors. Curr Top Med Chem 14(12):1450–1462.  https://doi.org/10.2174/1568026614666140530104344 CrossRefGoogle Scholar
  30. 30.
    Huong TTL, Dung DTM et al (2015) Novel 2-oxoindoline-based hydroxamic acids: synthesis, cytotoxicity, and inhibition of histone deacetylation. Tetrahedron Lett 56(46):6425–6429.  https://doi.org/10.1016/j.tetlet.2015.09.147 CrossRefGoogle Scholar
  31. 31.
    Wang X, Yin J et al (2014) Design, synthesis, and antibacterial activity of novel Schiff base derivatives of quinazolin-4(3H)-one. Eur J Med Chem 77:65–74.  https://doi.org/10.1016/j.ejmech.2014.02.053 CrossRefGoogle Scholar
  32. 32.
    Floegel A, Kim DO et al (2011) Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J Food Compost Anal 24:1043–1048.  https://doi.org/10.1016/j.jfca.2011.01.008 CrossRefGoogle Scholar
  33. 33.
    Kedare SB, Singh RP (2011) Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol 48(4):412–422.  https://doi.org/10.1007/s13197-011-0251-1 CrossRefGoogle Scholar
  34. 34.
    Kurt BZ, Gazioglu I et al (2015) Synthesis, antioxidant and anticholinesterase activities of novel coumarylthiazole derivatives. Bioorg Chem 59:80–90.  https://doi.org/10.1016/j.bioorg.2015.02.002 CrossRefGoogle Scholar
  35. 35.
    Kurt BZ, Gazioglu I et al (2015) Potential of aryl-urea-benzofuranylthiazoles hybrids as multitasking agents in Alzheimer’s disease. Eur J Med Chem 102:80–92.  https://doi.org/10.1016/j.ejmech.2015.07.005 CrossRefGoogle Scholar
  36. 36.
    Belkheiri N, Bouguerne B et al (2010) Synthesis and antioxidant activity evaluation of a syringic hydrazones family. Eur J Med Chem 45:3019–3026.  https://doi.org/10.1016/j.ejmech.2010.03.031 CrossRefGoogle Scholar
  37. 37.
    Apak R, Ozyurek M et al (2016) Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J Agric Food Chem 64:997–1027.  https://doi.org/10.1021/acs.jafc.5b04739 CrossRefGoogle Scholar
  38. 38.
    Powis G (1989) Free radical formation by antitumor quinones. Free Radic Biol Med 6:63–101.  https://doi.org/10.1016/0891-5849(89)90162-7 CrossRefGoogle Scholar
  39. 39.
    Soares MA, Lessa JA et al (2012) N4-Phenyl-substituted 2-acetylpyridine thiosemicarbazones: cytotoxicity against human tumor cells, structure–activity relationship studies and investigation on the mechanism of action. Bioorg Med Chem 20:3396–3409.  https://doi.org/10.1016/j.bmc.2012.04.027 CrossRefGoogle Scholar
  40. 40.
    Atahan A, Gencer N et al (2018) Synthesis, biological activity and structure-activity relationship of novel diphenylurea derivatives containing tetrahydroquinoline as carbonic anhydrase I and II inhibitors. ChemistrySelect 3:529–534.  https://doi.org/10.1002/slct.201702562 CrossRefGoogle Scholar
  41. 41.
    Minkin VI (1999) Glossary of terms used in theoretical organic chemistry. Pure Appl Chem 71:1919.  https://doi.org/10.1351/pac199971101919 CrossRefGoogle Scholar
  42. 42.
    Ho TL (1975) The hard soft acids bases (HSAB) principle and organic chemistry. Chem Rev 75:1–20.  https://doi.org/10.1021/cr60293a001 CrossRefGoogle Scholar
  43. 43.
    Shao Y, Gan Z et al (2015) Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol Phys 113(2):184–215.  https://doi.org/10.1080/00268976.2014.952696 CrossRefGoogle Scholar
  44. 44.
    Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377.  https://doi.org/10.1063/1.464304 CrossRefGoogle Scholar
  45. 45.
    Altürk S, Avcı D et al (2016) A cobalt (II) complex with 6-methylpicolinate: synthesis, characterization, second- and third-order nonlinear optical properties, and DFT calculations. J Phys Chem Solids 98:71–80.  https://doi.org/10.1016/j.jpcs.2016.06.008 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Fatih Sonmez
    • 1
    Email author
  • Zuhal Gunesli
    • 1
  • Belma Zengin Kurt
    • 2
  • Isil Gazioglu
    • 3
  • Davut Avci
    • 4
  • Mustafa Kucukislamoglu
    • 5
  1. 1.Pamukova Vocational High SchoolSakarya University of Applied SciencesSakaryaTurkey
  2. 2.Department of Pharmaceutical Chemistry, Faculty of PharmacyBezmialem Vakif UniversityIstanbulTurkey
  3. 3.Department of Analytical Chemistry, Faculty of PharmacyBezmialem Vakif UniversityIstanbulTurkey
  4. 4.Department of PhysicsSakarya UniversitySakaryaTurkey
  5. 5.Department of ChemistrySakarya UniversitySakaryaTurkey

Personalised recommendations