Mechanics of Composite Materials

, Volume 54, Issue 6, pp 789–798 | Cite as

Numerical Analysis of the Fracture Toughness of Low-Density Open-Cell Voronoi Foams

  • J. E. LiEmail author
  • B. L. Wang
  • S. L. Guo

In this study, the geometry of open-cell foams is simulated using a model based on Voronoi tessellations. The fracture toughness of open-cell foams with Voronoi cells, including Mode-I, Mode-II, and the mixed-mode ones, are calculated by the finite-element method based on a micromechanical model. Cracks in the micromechanical model are created through removing some number of cells pertaining to the crack length. Displacement boundary conditions are applied to the boundary of a small region surrounding the crack tip, which are calculated based on the linear elastic fracture mechanics. The effects of relative density, disorder factor and sample size on the predicted elastic properties and fracture toughness of open-cell foams with Voronoi cells are discussed and compared with results available in the literature.


open-cell foams Voronoi tessellation fracture toughness finite-element method micromechanics 



This research was supported by the National Science Foundation of China (Project No. 11502101) and the Jinling Institute of Technology Research Innovation Foundation, China (Project No. jit-b-201515). The authors are very grateful to the anonymous referee for providing a number of comments on their manuscript, which were very useful for improving the quality and presentation of the final paper.


  1. 1.
    R. Phelan, D. Weaire, and K. Brakke, “Computation of equilibrium foam structures using the surface evolver,” Experimental Mathematics, 4, 181-192 (1995).CrossRefGoogle Scholar
  2. 2.
    D. Baillis and J. F. Sacadura, “Thermal radiation properties of dispersed media: theoretical prediction and experimental characterization,” J. Quantitative Spectroscopy & Radiative Transfer, 67, 327-363 (2000).CrossRefGoogle Scholar
  3. 3.
    K. Boomsma and D. Poulikakos, “On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam,” Int. J. Heat Mass Transfer, 44, 827-836 (2001).CrossRefGoogle Scholar
  4. 4.
    A. Bhattacharya, V. V. Calmidi, and R. L. Mahajan, “Thermophysical properties of high porosity metal foams,” Int. J. Heat Mass Transfer, 45, 1017-1031 (2002).CrossRefGoogle Scholar
  5. 5.
    D. Edouard, “The effective thermal conductivity for “slim” and “fat” foams,” Am. Institute of Chemical Engineers, 57, No. 6, 1646-1651 (2011).CrossRefGoogle Scholar
  6. 6.
    H. T. Truong, M. Lacroix, C. H. Pham, et al., “Towards a more realistic modeling of solid foam: Use of the pentagonal dodecahedron geometry,” Chem. Eng. Sci., 64, 5131-5142 (2009).CrossRefGoogle Scholar
  7. 7.
    M. W. D. Van der Burg, V. Shulmeister, E. Van der Geissen, et al., “On the linear elastic properties of regular and random open-cell foam models,” J. Cellular Plastics, 33, No. 1, 31-54 (1997).CrossRefGoogle Scholar
  8. 8.
    J. E. Li and B. L. Wang, “Equivalent thermal conductivity of open cell ceramics foams at high temperatures,” Int. J. Thermophys., 35, 105-122 (2014).CrossRefGoogle Scholar
  9. 9.
    R. Coquard, D. Rochais, and D. Ballis, “Conductive and radiative heat transfer in ceramic and metal foams at fire temperatures,” Fire Technol., 48, 699-732 (2012).CrossRefGoogle Scholar
  10. 10.
    C. C. Tseng, R. L. Sikorski, R. Viskanta, and M. Y. Chen, “Effect of foam properties on heat transfer in open-cell foam inserts.” J. Am. Ceramic Soc., 95, No. 6, 2015-2021 (2012).CrossRefGoogle Scholar
  11. 11.
    M. Loretz, R. Coquard, D. Bailli, et al, “Metallic foams: radiative properties comparison between different models,” J. Quantitative Spectroscopy & Radiative Transfer, 109, No. 1, 16-27 (2008).CrossRefGoogle Scholar
  12. 12.
    A. Kaemmerlen, C. Voc, F. Asllanaja, G. Jeandela, and D. Baillis, “Radiative properties of extruded polystyrene foams: predictive model and experimental results,” J. Quantitative Spectroscopy & Radiative Transfer, 11, 865-877 (2010).CrossRefGoogle Scholar
  13. 13.
    P. C. Tseng and H. S. Chu, “An experimental study of the heat transfer in PS foam insulation,” Heat Mass Transfer, 45, 399-406 (2009).CrossRefGoogle Scholar
  14. 14.
    S. K. Nammi, P. Myler, and G. Edwards, “Finite-element analysis of closed-cell aluminium foam under quasi-static loading,” Mater. Des., 31, No. 2, 712-722 (2010).CrossRefGoogle Scholar
  15. 15.
    Y. An, C. Wen, P. Hodgson, et al, “Investigation of Cell Shape Effect on the Mechanical Behaviour of Open-cell Metal Foams,” Computational Mater. Sci., 55, No. 5, 1-9 (2012).CrossRefGoogle Scholar
  16. 16.
    U. E. Ozturk and G. Anlas, “Finite-element analysis of expanded polystyrene foam under multiple compressive loading and unloading,” Mater. Des., 32, No. 2, 773-780 (2011).CrossRefGoogle Scholar
  17. 17.
    J. B. Sha, T. H. Yip, and M. H. Teo, “FEM Modelling of single-core sandwich and 2-core multilayer beams containing foam aluminum core and metallic face sheets under monolithic bending,” Progress in Natural Sci.: Mater. Int., 21, No. 2, 127-138 (2011).CrossRefGoogle Scholar
  18. 18.
    P. Thiyagasundaram, B. V. Sankar, and N. K. Arakere, “Elastic properties of open-cell foams with tetrakaidecahedral cells using finite-element analysis,” AIAA J., 48, No. 4, 818-828 (2010).CrossRefGoogle Scholar
  19. 19.
    S. K. Maiti, M. F. Ashby, and L. J. Gibson, “Fracture-toughness of brittle cellular solids,” Scr. Metall, 18, 213-217 (1984).CrossRefGoogle Scholar
  20. 20.
    J. S. Huang and L. J. Gibson, “Fracture-toughness of brittle foams,” Acta Metall. Mater., 39, 1627-1636 (1991).CrossRefGoogle Scholar
  21. 21.
    J. S. Huang and L. J. Gibson, “Fracture-toughness of brittle honeycombs,” Acta Metall. Mater., 39, 1617-1626 (1991).CrossRefGoogle Scholar
  22. 22.
    R. Brezny and D. J. Green, “The effect of cell-size on the mechanical-behavior of cellular materials,” Acta Metall. Mater., 38, 2517-2526 (1990).CrossRefGoogle Scholar
  23. 23.
    R. Brezny and D. J. Green, “Factors controlling the fracture-resistance of brittle cellular materials,” J. Am. Ceram. Soc., 74, 1061-1065 (1991).CrossRefGoogle Scholar
  24. 24.
    R. Brezny, D. J. Green, and C. Q. Dam, “Evaluation of strut strength in open-cell ceramics,” J. Am. Ceram. Soc., 72, 885-889 (1989).CrossRefGoogle Scholar
  25. 25.
    L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, UK (1997).CrossRefGoogle Scholar
  26. 26.
    S. Choi and B. V. Sankar, “Fracture toughness of carbon foam,” J. Compos. Mater., 37, 2101-2016 (2003).CrossRefGoogle Scholar
  27. 27.
    S. Choi and B. V. Sankar, “A micromechanical method to predict the fracture toughness of cellular materials,” Int. J. Solids Struct., 42, 1797-1817 (2005).CrossRefGoogle Scholar
  28. 28.
    J. Wang, “Fracture toughness of cellular materials using finite-element based micromechanics,” Doctoral Dissertation, University of Florida, Gainesville, Florida (2007).Google Scholar
  29. 29.
    P. Thiyagasundaram, J. Wang, B. V. Sankar, et al., “Fracture toughness of foams with tetrakaidecahedral unit cells using finite-element based micromechanics,” Eng. Fracture Mech., 78, No. 6, 1277-1288 (2011).CrossRefGoogle Scholar
  30. 30.
    F. Aurenhammer, “Voronoi diagrams – a survey of a fundamental geometric data structure,” ACM Computing Surveys, 23, No. 3, 345-405 (1991).CrossRefGoogle Scholar
  31. 31.
    L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, Pergamon Press, Oxford (1988).Google Scholar
  32. 32.
    H. X. Zhu, J. F. Knott, and N. J. Mills, “Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells,” J. Mech. Phys. Solids, 45, No. 3, 319-343 (1997).CrossRefGoogle Scholar
  33. 33.
    W. E. Warren and A. M. Kraynik, “The linear elastic properties of open-cell foams,” J. Appl. Mech., 55, 341-346 (1988).CrossRefGoogle Scholar
  34. 34.
    A. P. Roberts and E. J. Garboczi, “Elastic properties of model random three-dimensional open-cell solids,” J. Mech. Phys. Solids, 50, 33-55 (2002).CrossRefGoogle Scholar
  35. 35.
    G. C. Sih and H. Liebowitz, Mathematical Theories of Brittle Fracture, Academic Press, New York–London (1968).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Architectural EngineeringJinling Institute of TechnologyNanjingP.R. China
  2. 2.Graduate School at ShenzhenHarbin Institute of TechnologyHarbinP.R. China

Personalised recommendations