Advertisement

Mechanics of Composite Materials

, Volume 54, Issue 6, pp 745–764 | Cite as

Nonlinear Buckling and Postbuckling of FGM Shear-Deformable Truncated Conical Shells Reinforced by FGM Stiffeners

  • D. Q. Chan
  • V. D. Long
  • N. D. DucEmail author
Article
  • 21 Downloads

In this study, the nonlinear buckling of stiffened FGM truncated conical shells resting on an elastic foundation and subjected to a uniform axial compressive load is considered. The shells are reinforced by FGM stringers and rings. Using the analytical approach, FSDT, Galerkin method, geometrical nonlinearity in the von Karman–Donnell sense, and Leknitskii smeared stiffener technique, the governing equations are derived. Closed-form expressions for determining the critical buckling load and for analyzing the postbuckling load–deflection curves are obtained. Finally, the effect of stiffeners, dimensional parameters, semivertex angle, material properties, and foundations on the nonlinear response of FGM truncated conical shells are analyzed and discussed in detail.

Keywords

nonlinear buckling and postbuckling FGM stiffened truncated conical shells FGM stiffeners first-order shear deformation theory uniform axial compressive load 

Notes

Acknowledgement

This research was funded by the Vietnam National University, Hanoi, under grant QG.17.45. The authors are grateful for this support.

References

  1. 1.
    M. Koizumi, “The concept of FGM,” Ceram. Trans. Funct. Grad. Mater., 34, 3-10 (1993).Google Scholar
  2. 2.
    R. Naj, M. S Boroujerdy, and M. R. Eslami, “Thermal and mechanical instability of functionally graded truncated conical shells,” Thin-Wall Struct., 46, 65-78 (2008).CrossRefGoogle Scholar
  3. 3.
    F. Tornabene, “Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution,” Comput. Methods Appl. Mech. Eng., 198, 2911-2935 (2009).CrossRefGoogle Scholar
  4. 4.
    E. Bagherizadeh, Y. Kiani, and M. R. Eslami, “Mechanical buckling of functionally graded material cylindrical shells surrounded by Pasternak elastic foundation,” Compos. Struct., 93, 3063-3071 (2011).CrossRefGoogle Scholar
  5. 5.
    J. Torabi, Y. Kiani, and M. R. Eslami, “Linear thermal buckling analysis of truncated hybrid FGM conical shells,” Composites: Part B., 50, 265-272 (2013).CrossRefGoogle Scholar
  6. 6.
    M. Akbari, Y. Kiani, and M. R. Eslami, “ Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports,” Acta Mech., 226, 897-915 (2015).CrossRefGoogle Scholar
  7. 7.
    J. E. Jam and Y. Kiani, “Buckling of pressurized functionally graded carbon nanotube reinforced conical shells,” Compos. Struct., 125, 586-595 (2015).CrossRefGoogle Scholar
  8. 8.
    J. Seidi, S. M. R. Khalili, and K. Malekzadeh, “Temperature-dependent buckling analysis of sandwich truncated conical shells with FG facesheets,” Compos. Struct., 131, 682-691 (2015).CrossRefGoogle Scholar
  9. 9.
    A. H. Sofiyev and N. Kuruoglu, “On the solution of the buckling problem of functionally graded truncated conical shells with mixed boundary conditions,” Compos. Struct., 123, 282-291 (2015).CrossRefGoogle Scholar
  10. 10.
    S. Castro, C. Mittelstedt, F. Monteiro, M. Arbelo, G. Ziegmann, and R. Degenhardt, “A semi-analytical approach for the linear and non-linear buckling analysis of imperfect unstiffened laminated composite cylinders and cones under axial, torsion and pressure loads,” Thin-Wall Struct., 90, 61-73 (2015).CrossRefGoogle Scholar
  11. 11.
    M. Jabbari, M. Z. Nejad, and M. Ghannad, “Thermo-elastic analysis of axially functionally graded rotating thick truncated conical shells with varying thickness,” Composites: Part B., 96, 20-34 (2016).CrossRefGoogle Scholar
  12. 12.
    D. V. Dung, L. K. Hoa, N. T. Nga, and L. T. N. Anh, “Instability of eccentrically stiffened functionally graded truncated conical shells under mechanical loads,” Compos. Struct., 106, 104-113 (2013).CrossRefGoogle Scholar
  13. 13.
    N.D. Duchttp://elib.isivast.org.vn:2051/science/article/pii/S0263822315004559 and P.H. Conghttp://elib.isivast.org.vn:2051/science/article/pii/S0263822315004559, “Nonlinear thermal stability of eccentrically stiffened functionally graded conical shells surrounded on elastic foundations,” Eur. J. Mech. A/Solids., 50, 120-131 (2015).
  14. 14.
    D..V. Dung and D..Q. Chan, “Analytical investigation on mechanical buckling of FGM truncated conical shells reinforced by orthogonal stiffeners based on FSDT,” Compos. Struct., 159, 827-841 (2017).CrossRefGoogle Scholar
  15. 15.
    A.. Sofiyev, “Non-linear buckling behavior of FGM truncated conical shells subjected to axial load,”, Int J Non-Linear Mech., 46, 711–719 (2011).CrossRefGoogle Scholar
  16. 16.
    N.D. Duchttp://elib.isivast.org.vn:2051/science/article/pii/S0263822315004559, V.T.T. Anh and P.H. Conghttp://elib.isivast.org.vn:2051/science/article/pii/S0263822315004559, “Nonlinear axisymmetric response of FGM shallow spherical shells on elastic foundations under uniform external pressure and temperature,” Eur. J. Mech. A/Solids., 45, 80-89 (2014).
  17. 17.
    H. V. Tung and N. D. Duc, “Nonlinear response of shear deformable FGM curved panels resting on elastic foundations and subjected to mechanical and thermal loading conditions,” App. Math. Mod., 38, 2848-2866 (2014).CrossRefGoogle Scholar
  18. 18.
    N. D. Duc and T. Q. Quan, “Transient responses of functionally graded double curved shallow shells with temperaturedependent material properties in thermal environment,” Eur. J. Mech. A/Solids., 47, 101-123 (2014).CrossRefGoogle Scholar
  19. 19.
    A. Alijani, M. Darvizeh, A. Darvizeh, and R. Ansari R, “On nonlinear thermal buckling analysis of cylindrical shells,” Thin-Wall Struct., 95, 170-182 (2015).Google Scholar
  20. 20.
    N. D. Duc and T. Q. Quan, “Nonlinear dynamic analysis of imperfect FGM double curved thin shallow shells with temperature-dependent properties on elastic foundation,” Vibration and Control., 21, No.7, 1340-1362 (2015).CrossRefGoogle Scholar
  21. 21.
    T.Q. Quan and N.D. Duc, “Nonlinear vibration and dynamic response of shear deformable imperfect functionally graded double curved shallow shells resting on elastic foundations in thermal environments,” Thermal Stresses., 39, No.4, 437-459 (2015).CrossRefGoogle Scholar
  22. 22.
    N. D. Duc, P. T. Thang, N. T. Dao, and H. V. Tac, “Nonlinear buckling of higher deformable S-FGM thick circular cylindrical shells with metal-ceramic–metal layers surrounded on elastic foundations in thermal environment,” Compos. Struct., 121, 134-141 (2015).CrossRefGoogle Scholar
  23. 23.
    N. D. Duc, “Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy’s third-order shear deformation shell theory,” Eur. J. Mech. A/Solids., 58, 10-30 (2016).CrossRefGoogle Scholar
  24. 24.
    D. G. Ninh and D. H. Bich, “Post-buckling of sigmoid-functionally graded material toroidal shell segment surrounded by an elastic foundation under thermo-mechanical loads,” Compos. Struct., 138, 253-263 (2016).CrossRefGoogle Scholar
  25. 25.
    N. D. Duc, P.H. Cong, V. M. Anh, V. D. Quang, T. Phuong, N. D. Tuan, and N. H. Thinh, “Mechanical and thermal stability of eccentrically stiffened functionally graded conical shell panels resting on elastic foundations and in thermal environment,” Compos. Struct., 132, 597-609 (2015).CrossRefGoogle Scholar
  26. 26.
    C. S. Xu, Z. Q. Xia, and C. Y. Chia, “Nonlinear theory and vibration analysis of laminated truncated thick conical shells,” Int. Nonlinear Mech., 31, No.2, 139-54 (1996).CrossRefGoogle Scholar
  27. 27.
    L. Tong and T. K. Wang, “Simple solutions for buckling of laminated conical shells,” Int. J. Mech. Sci., 34, No. 2, 93-111 (1992).CrossRefGoogle Scholar
  28. 28.
    D. O. Brush and B.O. Almroth, Buckling of Bars, Plates and Shells, New York: McGraw-Hill (1975).CrossRefGoogle Scholar
  29. 29.
    M. Baruch, O. Harari, and J. Singer, “Low buckling loads of axially compressed conical shells,” J. Appl. Mech., 37, 384-392 (1970).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of Transport TechnologyHanoiVietnam
  2. 2.VNU, HanoiUniversity of scienceHanoiVietnam
  3. 3.Advanced Materials and Structures Laboratory, VNUHanoi University of Engineering and TechnologyHanoiVietnam
  4. 4.Infrastructure Engineering Program, VNUHanoi - Vietnam-Japan UniversityHanoiVietnam
  5. 5.National Research Laboratory, Department of Civil and Environmental EngineeringSejong UniversitySeoulKorea

Personalised recommendations