Advertisement

A Multiscale Approach to Studying the High Strain-Rate Deformations of Glass-Fiber-Reinforced Polymer-Matrix Composites

  • J. J. YeEmail author
  • J. Xi
  • Y. Hong
  • Y. Li
  • C. C. Chu
  • H. Cai
  • Y. K. Wang
Article
  • 21 Downloads

The mechanical properties and failure of composites depend on their microscopic characteristics (constituent properties and microscopic structural features). The continuum theory cannot explain the failure mechanism of composite materials in terms of connecting microscopic damage to the macroscopic fracture. In this paper, a multiscale method combining the High-Fidelity Generalized Method of Cells with ANSYS/LS-DYNA is presented. The method is validated by comparing calculations with experimental results. A nonlinear analysis of glass-fiber-reinforced polymer-matrix composites at high strain rates is performed. The results obtained show that the method presented can be effectively used to predict the mechanical properties of polymer-matrix composites and the increase in stiffness of the composites with growing strain rate.

Keywords

multiscale method polymer composites micromechanics high strain rate 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51675397 and 51805400), the National Natural Science Foundation of Shaanxi Province (Nos. 2018JZ5005 and 2017JQ5002), China Scholarship Council (No. 201706965037), and Fundamental Research Funds for the Central Universities (No. JB180414), Project No. B14042. The first author is also grateful to the Engineering Department, Lancaster University, for the support he received during of his visit.

References

  1. 1.
    D. A. Bulgakov, Y. A. Gorenberg, and A. M. Kuperman, “Orientation of anisotropic carbon particles in the matrix of reinforced plastics by an AC electric field,” Mech. Compos. Mater., 54, 647-654 (2018).CrossRefGoogle Scholar
  2. 2.
    J. Montesano, H. Chu, and C. V. Singh, “Development of a physics-based multiscale progressive damage model for assessing the durability of wind turbine blades,” Compos. Struct., 141, 50-62 (2016).CrossRefGoogle Scholar
  3. 3.
    D. H. Zhang, D. Q. Bai, J. B. Liu, Z. Guo, and C. Guo, “Formability behaviors of 2a12 thin-wall part based on DYNAFORM and stamping experiment,” Compos. Part B-Eng., 55, 591-598 (2013)CrossRefGoogle Scholar
  4. 4.
    D. H. Zhang, C. Guo, and X. P. Du, “Uniaxial tensile fracture of stainless steel-aluminum bi-metal,” P. I. Mech. Eng. C-J. Mec., 225, 1061-1068 (2011).CrossRefGoogle Scholar
  5. 5.
    D. H. Zhang, G. Z. Xie, Y. Q. Li, and J. X. Liu, “Strain and mechanical properties of VCM multi-layer sheet and their composites using digital speckle correlation method,” Appl. Optics., 54, 7534-7541 (2015).CrossRefGoogle Scholar
  6. 6.
    J. J. Ye, H. Cai, Y. K. Wang, Z. Jing, B. Q. Shi, Y. Y. Qiu, and X.F. Chen, “Effective mechanical properties of piezoelectric-piezomagnetic hybrid smart composites,” J. Intel. Mat. Syst. Struct., 29, 1711-1723 (2018).CrossRefGoogle Scholar
  7. 7.
    J. J. Ye, Y. Y. Qiu, X. F. Chen, and J. Ma, “Initial and final failure strength analysis of composites based on a micromechanical method,” Compos. Struct., 125, 328-335 (2015).CrossRefGoogle Scholar
  8. 8.
    L. Bernd, “Stress field calculation around a particle in elastic-plastic polymer matrix under multiaxial loading as basis for the determination of adhesion strength,” Compos. Interface., 23, 1-14 (2016).CrossRefGoogle Scholar
  9. 9.
    B. Mohammadi, M. Abbaszadeh, and A. Keshmiri, “Variational approach development in analysis of matrix cracking and induced delamination of cross-ply composite laminates subjected to in-plane shear loading,” Mech. Adv. Mater. Struct., 25, 481-499 (2018).CrossRefGoogle Scholar
  10. 10.
    M. Y. Matveev, A. C. Long, and I. A. Jones, “Modeling of textile composites with fiber strength variability,” Compos. Sci. Technol., 105, 44-50 (2014).CrossRefGoogle Scholar
  11. 11.
    Z. Lu, C. Wang, and B. Xia, “Effect of interfacial properties on the thermophysical properties of 3D braided composites: 3D multiscale finite element study,” Polym. Compos., 35, 1690-1700 (2014).CrossRefGoogle Scholar
  12. 12.
    S. Li, S. Roy, and V. Unnikrishnan, “Modeling of fracture behavior in polymer composites using concurrent multiscale coupling approach,” Mech. Adv. Mater. Struct., 25, 1342-1350 (2018).CrossRefGoogle Scholar
  13. 13.
    Y. Cai and H. Sun, “Prediction on viscoelastic properties of three-dimensionally braided composites by multiscale model,” J. Mater. Sci., 48, 6499-6508 (2013).CrossRefGoogle Scholar
  14. 14.
    M. Sardar, Z. Navid, and G. Thomas, “A comprehensive multiscale analytical modelling framework for predicting the mechanical properties of strand-based composites,” Wood Sci. Technol., 49, 59-81 (2015).CrossRefGoogle Scholar
  15. 15.
    J. Kato, D. Yachi,·K. Terada, and T. Kyoya, “Topology optimization of microstructure for composites applying a decoupling multiscale analysis,” Struct. Multidisc. Optim., 49, 595-608 (2014).CrossRefGoogle Scholar
  16. 16.
    S. K. Georgantzinos, G. I. Giannopoulos, K. N. Spanos, and N. K. Anifantis, “A heterogeneous discrete approach of interfacial effects on multiscale modelling of carbon nanotube and graphene based composites,” Model. Carbon Nano. Grap. Compos., 188, 83-109 (2014).Google Scholar
  17. 17.
    G. Han, Z. Guan, and Z. Li., “Multiscale modeling and damage analysis of composite with thermal residual stress,” Appl. Compos. Mater., 22, 289-305 (2015).CrossRefGoogle Scholar
  18. 18.
    M. Meng, M. J. Rizvi, H. R. Le, and S. M. Grove, “Multiscale modelling of moisture diffusion coupled with stress distribution in CFRP laminated composites.” Compos. Struct., 138, 295-304 (2016).CrossRefGoogle Scholar
  19. 19.
    J. J. Ye, C. C. Chu, H. Cai, Y. K. Wang, X. J. Qiao, Z. Zhai, and X.F. Chen, “A multiscale modeling scheme for damage analysis of composite structures based on the High-Fidelity Generalized Method of Cells.” Compos. Struct., 206, 42-53 (2018).CrossRefGoogle Scholar
  20. 20.
    J. J. Ye, C. C. Chu, H. Cai, X. N. Hou, B. Q. Shi, S. H. Tian, X. F. Chen, and J. Q. Ye, “A multiscale model for studying failure mechanisms of composite wind turbine blades.” Compos. Struct., 212, 220-229 (2019).CrossRefGoogle Scholar
  21. 21.
    A. Saikat, D. K. Mondal, K. S. Ghosh, and A. K Mukhopadhyay, “Mechanical behaviour of glass fibre reinforced composite at varying strain rates,” Mater. Res. Express., 4, 381-394 (2017).Google Scholar
  22. 22.
    M. M. Shokrieh and A. Karamnejad, “Investigation of strain rate effects on the dynamic response of a glass/epoxy composite plate under blast loading by using the finite-difference method,” Mech. Compos. Mater., 50, 295-310 (2014).CrossRefGoogle Scholar
  23. 23.
    T. K. Tran and D. J. Kim, “Investigating direct tensile behavior of high performance fiber reinforced cementitious composites at high strain rates,” Cement Concrete Res., 50, 62-73 (2013).CrossRefGoogle Scholar
  24. 24.
    T. K. Tran, D. J. Kim, and E. Choi, “Behavior of double-edge-notched specimens made of high performance fiber reinforced cementitious composites subject to direct tensile loading with high strain rates,” Cement and Concrete Res., 63, 54-66 (2014).CrossRefGoogle Scholar
  25. 25.
    Y. Wan, B. Sun, and B. Gu, “Multiscale structure modeling of damage behaviors of 3D orthogonal woven composite materials subject to quasi-static and high strain rate compressions,” Mech. Mater., 94, 1-25 (2016)CrossRefGoogle Scholar
  26. 26.
    H. Koerber, J. Xavier, and P. P. Camanho, “High strain rate behavior of 5-harness-satin weave fabric carbon-epoxy composite under compression and combined compression-shear loading,” Int. J. Solids Struct., 54, 172-182 (2015).CrossRefGoogle Scholar
  27. 27.
    K. Luan, B. Sun, and B. Gu, “Ballistic impact damages of 3-D angle-interlock woven composites based on high strain rate constitutive equation of fiber tows,” Int. J. Imp. Eng., 57, 145-158 (2013).CrossRefGoogle Scholar
  28. 28.
    Z. M. Huang and Y. X. Zhou. In: Zhang C, ed., Strength of Fibrous Composites. Zhejiang: Zhejiang University; 2012.CrossRefGoogle Scholar
  29. 29.
    A. Lagzdins, R. D. Maksimov, and E. Plume, “Anisotropy of elasticity of a composite with irregularly oriented anisometric filler particles,” Mech. Compos. Mater., 45, 345 (2009).CrossRefGoogle Scholar
  30. 30.
    J. Aboudi, S. M. Arnold, and B. A. Bednarcyk, The Generalized Method of Cells Micromechanics. Micromechanics of Composite Materials-A. Generalized Multiscale Analysis Approach. Oxford: Kidlington, 2013.Google Scholar
  31. 31.
    J. Aboudi, M. J. Pindera, and S. M. Arnold, “High-fidelity generalized method of cells for inelastic periodic multiphase materials,” NASA TM-2002-211469 (2002).Google Scholar
  32. 32.
    I. M. Daniel, “Yield and failure criteria for composite materials under static and dynamic loading,” Prog. Aerosp. Sci., 81, 18-25 (2016).CrossRefGoogle Scholar
  33. 33.
    K. J. Yoon and C. T. Sun, “Characterization of elastic-viscoplastic properties of an AS4/PEEK thermoplastic composite,” J. Compos. Mater., 25, 1277-1296 (1991).CrossRefGoogle Scholar
  34. 34.
    J. J. Ye, Y. Y. Qiu, Z. Zhai, and X. F. Chen, “Strain rate influence on nonlinear response of polymer-matrix composites,” Polym. Compos., 36, 800-810 (2015).CrossRefGoogle Scholar
  35. 35.
    G. L. Shen, G. K. Hu, and B. Liu, Mechanics of Composite Materials (2nd. ed), Beijing, Tsinghua University Press, 2013.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • J. J. Ye
    • 1
    Email author
  • J. Xi
    • 1
  • Y. Hong
    • 1
  • Y. Li
    • 2
  • C. C. Chu
    • 1
  • H. Cai
    • 1
  • Y. K. Wang
    • 1
  1. 1.Research Center for Applied Mechanics, Key Laboratory of Ministry of Education for Electronic Equipment Structure DesignXidian UniversityXi’anChina
  2. 2.China Academy of Space Technology (Xi’an)Xi’anChina

Personalised recommendations