Resonant Piezoelectroluminescent Fiber-Optical Sensor of a Temperature Field in Composite Structures

  • A. A. Pan’kovEmail author

A dynamic mathematical model of functionation of a fiber-optical sensor in the process of resonant diagnosing of a temperature field inhomogeneous along the longitudinal axis of the sensor is developed. The resonant approach is based on a given amplitude-frequency characteristic of forced stationary electroelastic vibrations of a local section of the sensor caused by the action of the harmonic component of controlling voltage (CCV) on its electrodes; the constant CCV is necessary for tuning the sensor to the operating mode in the range of temperatures considered. The density distribution function of temperature along the sensor is found by solving the Fredholm integral equation of the first kind using the measured values of derivative with respect to the frequency of the harmonic CCV of the function of the amplitude of intensity of glow at the exit of the fiber-optical sensor. A method for resonant scanning of an ina uniform temperature field along the longitudinal axis of the sensor is developed; the method uses a new algorithm for processing the intensity of informative light signals at the exit from the optical fiber for various frequencies of the harmonic CCV. Results of a numerical modeling of the function of intensity of light pulses at the exit from the fiber-optical sensor, of the distribution of voltage amplitudes on the electroluminescent layer and of resonance frequencies along the sensor axis are presented for diagnosing an inhomogeneous model temperature field.


temperature sensor piezoelectroelasticity mechanoluminescence effect piezoresonator light intensity optical fiber Fredholm integral equation numerical modeling 



The work was performed at a financial support of grant No 16-41-590726 of the Russian Fund for Basic Research.


  1. 1.
    J. Fraden, Handbook of Modern Sensors, N. Y., Springer-Verlag (2004).Google Scholar
  2. 2.
    Next Generation Sensors and Systems, ed. Mukhopadhyay Subhas Chandra, Springer Int. Publ. (2016).Google Scholar
  3. 3.
    Fiber Optic Sensors, eds. I. R. Matias, S. Ikezawa, and J. Corres, Springer Int. Publ. (2017).Google Scholar
  4. 4.
    Sensors and Microsystems, eds. A. Leone, A. Forleo, L. Francioso, S. Capone, P. Siciliano, and C. Di Natale, Proc. of the 19th AISEM 2017 National Conference, Springer Int. Publ. (2018).Google Scholar
  5. 5.
    Smart Sensors and MEMS, ed. S. Nihtianov, and A. Luque, Woodhead Publ. (2018).Google Scholar
  6. 6.
    V. L. Kozlov, Fiber-Optical Sensors [in Russian], Minsk, Belgosuniversitet (2005).Google Scholar
  7. 7.
    Fiber-Optical Sensors. Introductory course for engineers and scientists [in Russian], ed E. Udda, M., Tekhnosfera (2008).Google Scholar
  8. 8.
    A. V. Karyakin and A. S. Borovikov, Luminescent and Color Defectoscopy [in Russian], M., Mashinostroenie (1972).Google Scholar
  9. 9.
    L. V. Levshin, A. M. Saletskii, Luminescence and Its Measuring [in Russian], M., Izd. MGU (1989).Google Scholar
  10. 10.
    T. I. Grishaeva, Metods of Luminescent Analysis [in Russian], ANO NPO “Professional” (2003).Google Scholar
  11. 11.
    S. G. Karitskaya, Diagnostics of Temperature and Speed Fields by Luminescence Methods [in Russian], Diss cand. phys.-mat. sciences, Izd. MGU (1997).Google Scholar
  12. 12.
    V. B. Garmash, F. A. Egorov, L. N. Kolomiets, A. P. Neugodnikov, and V. I. Pospelov, “Possibilities, problems, and prospects of fiber-optical measuring systems in the modern instrument-making,” Spetsvypusk “FOTON – EKSPRESS,” NAUKA, No. 6, 128-140 (2005).Google Scholar
  13. 13.
    V. G. Androsova, V. N. Bankov, A. N. Dikidzhi, et al. Reference Book on Quartz Resonators [in Russian], ed. P. G. Pozdnyakov, M., Svyaz’ (1978).Google Scholar
  14. 14.
    Patent RU No. 2206878, A way of measuring the spatial distribution of temperature and a device for its realization, Yu. K. Evdokimov, E. M. Kutin, F. Kh. Netfullov, V. G. Mikheev, R. K. Sagdiev, A. F. Baitullin, and Ya. А. Parts, No. 2001126602. Declared 01.10.2001; publ. 20.06.2003.Google Scholar
  15. 15.
    Patent RU No. 2630537. Fiber-optical pressure sensor, A. A. Pankov, No. 2016136058. Declared 06.09.2016; publ. 11.09.2017.Google Scholar
  16. 16.
    Patent RU No. 2643692. Fiber-optical sensor of 3D stress state A. A. Pankov, No. 2017111405, Declared 04.04.2017; publ. 05.02.2018.Google Scholar
  17. 17.
    A. A. Pan’kov, “Piezoelectroluminescent optical fiber sensor for diagnostics of the stress state and defectoscopy of composites,” Mech. Compos. Mater., 53, No. 2, 229-242 (2017).CrossRefGoogle Scholar
  18. 18.
    A. A. Pan’kov , “A piezoelectroluminescent fiber-optical sensor for diagnostics of the 3D stress state in composite structures,” Mech. Compos. Mater., 54, No. 2, 155-164 (2018).CrossRefGoogle Scholar
  19. 19.
    A. A. Pan’kov, “Mathematical model for diagnosing strains by an optical fiber sensor with a distributed Bragg grating according to the solution of a Fredholm integral equation,” Mech. Compos. Mater., 54, No. 4, 513-522 (2018).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Perm National Research Polytechnical UniversityPermRussia

Personalised recommendations