Static Analysis of Properties of a Composite Slab Made from Steel Fibers and a Reinforced Foam Concrete

  • Y. WangEmail author
  • H. Liu
  • C. Xi
  • G. Dou
  • L. Qian

The effect of reinforcement configuration (steel fibers and a rebar) on the mechanical performance of a multiribbed composite slab (MCS) has been investigated. Four full-scale multiribbed composite prefabricated slabs with different volume fractions of steel fibers and the same total steel content were manufactured using a steel-fiber-reinforced concrete, foam concrete, and normal concrete. Various technical indicators were detected under the same static load, including the crack resistance, yield load, ultimate load, maximum deflection, destruction pattern, and stress of the steel rebar. The MCS exhibited excellent properties, and it is concluded that such slabs can be recommended for use in practice.


reinforcement configuration steel-fiber concrete prefabricated composite floor foam concrete full-scale pieces static test volume fraction of steel fiber 



This work was supported by the Ministry of Housing and Urban-Rural Development of China (Grant No. 2010-k1-26).


  1. 1.
    M. D. Prisco, G. Plizzari, and L. Vandewalle, “Fiber reinforced concrete: new design perspectives,” Mater. Struct., 42, No. 9, 1261-1281(2009).CrossRefGoogle Scholar
  2. 2.
    CECS 38:2004, Brief Introduction of Technical Specification for Fiber Reinforced Concrete Structures, Beijing (2004).Google Scholar
  3. 3.
    fib Bulletin 65, 2010, Model code 2010 – final draft, ISBN: 978-2-88394-105-2., 1, 300 (2012).Google Scholar
  4. 4.
    fib Bulletin 66, 2010, Model code 2010 – final draft, ISBN: 978-2-88394-106-9., 2, 370 (2012).Google Scholar
  5. 5.
    S. Scott, S. H. Hu , and K. S. Jin, “FRP-strengthened RC slabs anchored with FRP anchors,” Eng. Struct., 33, No. 4, 1075-1087 (2011).CrossRefGoogle Scholar
  6. 6.
    L. Sorelli, A. Meda, and G. Plizzari, “Steel fiber concrete slabs on ground: a structural matter,” ACI Struct. J., 103, No. 4, 551-558 (2006).Google Scholar
  7. 7.
    RILEM TC 162-TDF, “Test and design methods for steel fibre reinforced concrete-r–e design method: final recommendations,” Mater. Struct., 36, 560-567 (2003).CrossRefGoogle Scholar
  8. 8.
    X. Destrée. “Free suspended elevated flat slabs of steel fibre reinforced concrete: full scale tests and design,” 7th Int. RILEM-symposium on fibre reinforced concrete, Chennai, 941–950.Google Scholar
  9. 9.
    B. Belletti, R. Cerioni, A. Meda, and G. Plizzari, “Design aspects on steel fiber-reinforced concrete pavements,” Civ. Eng., 20, No. 9, 599-607 (2008).Google Scholar
  10. 10.
    L. Vandewalle, “RILEM TC162-TDF: Tests and design methods for steel fibre reinforced concrete: Uni-axial Tension Test, Technical Recommendation,” Mater. Struct., 35, No. 5, 262-278 (2001).Google Scholar
  11. 11.
    L. Vandewalle, “Test and design methods for steel fibre reinforced concrete—σ–ε design method—Final recommendation,” Mater. Struct., 36, No. 8, 560-567 (2003).CrossRefGoogle Scholar
  12. 12.
    P. Pujadas, A. Blanco, S. Cavalaro, and A. Aguado, “Plastic fibres as the only reinforcement for flat suspended slabs: Experimentalinvestigation and numerical simulation,” Constr. Build. Mater., 57, 92-104 (2014).CrossRefGoogle Scholar
  13. 13.
    R. Al-Rousan, M. Issa, and H. Shabila, “Performance of reinforced concrete slabs strengthened with different types and configurations of CFRP,” Composties: Part B, 43, No. 2, 510-521 (2012).CrossRefGoogle Scholar
  14. 14.
    F. Elgabbas, AA. El-Ghandour, AA. Abdelrahman, and AS. El-Dieb, “Different CFRP strengthening techniques for prestressed hollow core concrete slabs:experimental study and analytical investigation,” Compos. Struct., 92, No. 2, 401-411 (2010).CrossRefGoogle Scholar
  15. 15.
    A. Blanco, P. Pujadas, A. De la Fuente, S. H. P. Cavalaro, and A. Aguado, “Influence of the type of fiber on the structural response and design of FRC slabs,” Struct. Eng. (2016).Google Scholar
  16. 16.
    L. Ferrara, S. Grunewald, and J. Walraven, “Characterization of the orientation profile of steel fiber reinforced concrete,” Mater. Struct., 44, No. 6, 1093-1111 (2011).CrossRefGoogle Scholar
  17. 17.
    L. Ferrara, N. Ozyurt, and M. D. Prisco, “High mechanical performance of fibre reinforced cementitious composites: the role of “casting-flow induced” fibre orientation,” Mater, Struct., 44, No. 1, 109-128 (2011).CrossRefGoogle Scholar
  18. 18.
    L. Facconi, F. Minelli, and G. Plizzari, “Steel fiber reinforced self-compacting concrete thin slabs – Experimental study and verification against Model Code 2010 provisions,” Eng. Struct., 122, 226-237 (2016).CrossRefGoogle Scholar
  19. 19.
    Y. S. Tao, “Analysis on energy saving effect of aerated concrete building,” [in chinese], New Build Mater., No. 1, (2005).Google Scholar
  20. 20.
    Y. J. Liu, B. T. Chen, and Y. Chen, “Literature review on the development and application of autoclaved aerated concrete in China and oversea,” Building Energy Efficiency, 3, (2013).Google Scholar
  21. 21.
    Z. H. Zhang, F. Liu, and L. J. Li, and Y. Q. Chen, and G. Y. Fan, “The research and application of fiber reinforced concret,” New Build. Mater., No. 6, (2003).Google Scholar
  22. 22.
    L. Sorelli, A. Meda, and G. Plizzari, “Steel fiber concrete slabs on ground: a structural matte,” ACI Struct. J., 103, No. 4, 551-558 (2006).Google Scholar
  23. 23.
    Abdul Ahad, “Application of steel fiber in increasing the strength, life-period and reducing overall cost of road construction (by minimizing the thickness of pavement),” World J. Eng. Technol., 3, No. 4, 240-250 (2018).CrossRefGoogle Scholar
  24. 24.
    B. Chiaia, A. Fantilli, and P. Vallini, “Combining fiber-reinforced concrete with traditional reinforcement in tunnel linings,” Eng. Struct., 31, No. 7, 1600-1606 (2009).CrossRefGoogle Scholar
  25. 25.
    S. Abbas, A. M. Soliman, and M. L. Nehdi, “Chlorideion penetration in reinforced concrete and steel fiber-reinforced concrete precast tunnel lining segments,” ACI Mater. J., 111, No. 1-6, 1-10 (2014).Google Scholar
  26. 26.
    M. D. Prisco, D. Dozio, and B. Belletti, “On the fracture behaviour of thin-walled SFRC roof elements,” Mater. Struct., 46, No. 5, 803-829 (2013).CrossRefGoogle Scholar
  27. 27.
    F. Minelli and G A Plizzari, “On the effectiveness of steel fibers as shear reinforcement,” ACI Struct. J. 110, No. 3, 379-90 (2013).Google Scholar
  28. 28.
    G. Tiberti, F. Minelli, and G. Plizzari, “Reinforcement optimization of fiber reinforced concrete linings for conventional tunnels,” Composites: Part B, 58, 199-207 (2014).CrossRefGoogle Scholar
  29. 29.
    J. Michels, D. Waldmann, and S. Maas, and A. Zürbes, “Steel fibers as only reinforcement for flat slab construction – experimental investigation and design,” Constr. Build. Mater., 26, No.1, 145-155 (2012).Google Scholar
  30. 30.
    J. Michels, R. Christen, and D. Waldmann, “Experimental and numerical investigation on postcracking behavior of steel fiber reinforced concrete,” Eng. Fract. Mech., 98, 326-349 (2013).CrossRefGoogle Scholar
  31. 31.
    N. M. Hawkins, “Progressive collapse of flat-plate structures,” ACI Struct. J., 76, No. 7, 775-808 (1979).Google Scholar
  32. 32.
    D. Mitchell and W. D. Cook, “Preventing progressive collapse of slab structures,” J. Struct. Eng., 110, No. 7, 1513-1532 (1984).CrossRefGoogle Scholar
  33. 33.
    X. Destrée, “Free suspended elevated flat slabs of steel fibre reinforced concrete: full scale tests and design,” 7th Int. RILEM-symposium on fibre reinforced concrete, Chennai, 941-950.Google Scholar
  34. 34.
    B. Mobasher, Y. Yao, and C. Soranakom, “Analytical solutions for flexural design of hybrid steel fiber reinforced concrete beams,” Eng. Struct., 100, 164-177 (2015).CrossRefGoogle Scholar
  35. 35.
    P. Pujadas, A. Blanco, and A. D. L. Fuente, and A. Aguado, “Cracking behavior of FRC slabs with traditional reinforcement,” Mater. Struct., 45, No. 5, 707-725 (2012).Google Scholar
  36. 36.
    J. A. O. Barros, M. Taheri, and H. Salehian, “A model to simulate the moment–rotation and crack width of FRC members reinforced with longitudinal bars,” Eng. Struct., 100, 43-56 (2015).CrossRefGoogle Scholar
  37. 37.
    A. Gholamhoseini, A. Khanlou, G. MacRae, A. Scott, S. Hicks, and R. Leon, “An experimental study on strength and serviceability of reinforced and steel fibre reinforced concrete (SFRC) continuous composite slabs,” Eng. Struct., 114, 171-180 (2016).CrossRefGoogle Scholar
  38. 38.
    A. Meda, F. Minelli, and G. A. Plizzari, “Flexural behaviour of RC beams in fibre reinforced concrete,” Composites: Part B, Eng., 43, No. 8, 2930-2937 (2012).CrossRefGoogle Scholar
  39. 39.
    F. M. Abas, R. I. Gilbert, S. J. Foster, and M. A. Bradford, “Strength and serviceability of continuous composite slabs with deep trapezoidal steel decking and steel fibre reinforced concrete”. Eng. Struct., 49, No. 2, 866-875 (2013).CrossRefGoogle Scholar
  40. 40.
    F. P. Ackermann, J. Schnell, “Steel fibre reinforced continuous composite slabs,” Proc. of 6th Int. Conf. on Composite Construction, Tabernash, Colorado, USA (2008).Google Scholar
  41. 41.
    W. Lin, T. Yoda, and N. Taniguchi, “Application of SFRC in steel-concrete composite beams subjected to hogging moment,” J. Constr. Steel Res., 101, 175-183 (2014).CrossRefGoogle Scholar
  42. 42.
    W. Lin, T. Yoda, N. Taniguchi, H. Kasano, and J. He, “Mechanical performance of steel-concrete composite beams subjected to a hogging moment,” J. Struct. Eng., 140, No. 1, 04013031 (2014).CrossRefGoogle Scholar
  43. 43.
    F. R. Mansour, S. Abu Bakar, I. S. Ibrahim, A. K. Marsono, and B. Marabi, “Flexural performance of a precast concrete slab with steel fiber concrete topping,” Constr. Build. Mater., 75, 112-120 (2015).CrossRefGoogle Scholar
  44. 44.
    H C. Mertl, E. Baran, and H. J. Bello, “Flexural behavior of lightly and heavily reinforced steel fiber concrete beams,” Constr. Build. Mater., 98, 185-193 (2015).CrossRefGoogle Scholar
  45. 45.
    M. Mastali, M G. Naghibdehi, M. Naghipour, and S. M. Rabiee, “Experimental assessment of funnctionally graded reinforced concrete(FGRC) slab under drop weight and projectile impacts,” Constr. Build. Mater., 95, 296-311 (2015).CrossRefGoogle Scholar
  46. 46.
    J. Chujie, S. Wei, G. P. Zheng, and Z. Yun, “Experimental study on mechanical performance of steel fiber reinforced concrete,” J. Guangzhou University (Natural Sci. Ed.), 4, (2005).Google Scholar
  47. 47.
    Z. Guofan Zhao, P. Shaoming, and C. K. Huang, The Structure of Steel Fiber Reinforced Concrete, CAB Press, Beijing (1999).Google Scholar
  48. 48.
    GB/T 50152-2012. Standard for test method of concrete structures. CAB Press, Beijing (2012).Google Scholar
  49. 49.
    GB 50010-2010. Code for design of concrete structures. CAB Press, Beijing (2010).Google Scholar
  50. 50.
    J. M. Gao and W. Sun, “Research on the fatigue characteristic of steel fiber reinforced concrete,” Southeast University, No. 4 (1989).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Jilin Jianzhu University, Jilin Structure and Earthquake Resistance Technology Innovation CenterChangchunChina

Personalised recommendations