Mechanical Properties and Biocompatibility of a Biomaterial on the Basis of Natural Hydroxyapatite and an Endodentic Cement1

  • L. RupeksEmail author
  • V. Filipenkov
  • V. Vitins
  • I. Knets

The biocompatibility of hydroxyapatite is appropriate for bone substitution, but its mechanical properties have to be improved. In this work, a natural deproteinized hydroxyapatite was combined with an endodontic cement, which is used as binder, has a short setting time and suitable mechanical characteristics, and is biocompatible with live tissues. Resorption properties of both the materials are different, but combining them, it is possible to make a new biphasic composite biomaterial with good mechanical properties, a short setting time, and controllable biodegradation. The new biocomposite was implanted subcutaneously in laboratory rats for eight and fourteen weeks, and thereafter its morphological alterations and contact with the live tissue were evaluated. A histological analysis showed that the implant had not caused inflammation and had been accepted by the live tissue. Microscopic examinations during the experiment showed that each fraction of the composite was resorbed in different times, and, in such a way, a porous structure of the implanted material was formed, which is essential for interdigitation of the hard tissue into the implant. In order to determine the mechanical properties of the new composite, it was tested in compression at different loading rates.


natural hydroxyapatite endodontic cement mechanical properties controllable biodegradation biphasic composite biomaterial 


  1. 1.
    L. L. Hench and J. Wilson, An Introduction to Bioceramics, 1, 255-267, (1993).Google Scholar
  2. 2.
    D. Wahl and J. Czernuszka, “Collagen-hydroxyapatite composites for hard tissue repair,” Europ. Cells and Mater., 11, 43-56 (2006).CrossRefGoogle Scholar
  3. 3.
    J. Brandt, S. Henning, and G. Michler , “Nanocrystalline hydroxyapatite for bone repair: an animal study,” J. Mater. Sci. - Mater. Med., 21, No 1, 283-294 (2010).CrossRefGoogle Scholar
  4. 4.
    V. Filipenkovs, L. Rupeks, I. Knets, N. Boradajenko, Z. Irbe, L. Mezmale, and I. Rozenstrauha, “Mechanical properties of cattle bone tissue and natural hydroxyapatite,” Mater. Sci. Appl. Chem., 25, 26-31, (2012).Google Scholar
  5. 5.
    S. V. Panin, L. A. Kornienko, M. V. Chaikina, V. P. Sergeev, L. R. Ivanova, and S. V. Shilko, “Nano- and microstructured UHMWPE composites filled with hydroxyapatite irradiated by nitrogen ion beams for bio-medical applications,” Russian Phys. J., 56, No. 10, 1137-1143 (2014).CrossRefGoogle Scholar
  6. 6.
    U. S. Shin, I. K. Yoon, G. S. Lee, J. Knowles, and W. Kim, “Carbon nanotubes in nanocomposites and hybrids with hydroxyapatite for bone replacements,” J. of Tissue Engineering, 1-10 (2011).Google Scholar
  7. 7.
    V. Khalili, J. Khalil-Allafi, W. Xia, A. B. Parsa, J. Frenzel, C. Somsen, and G. Eggeler, “Preparing hydroxyapatite-silicon composite suspensions with homogeneous distribution of multi-walled carbon nano-tubes for electrophoretic coating of NiTi bone implant and their effect on the surface morphology,” Appl. Surf. Sci., 366, 158-165 (2016).CrossRefGoogle Scholar
  8. 8.
    C. Prati, M. and G. Gandolfi, “Calcium silicate bioactive cements: Biological perspectives and clinical applications,”Dent., Mater., 31, 351-370 (2015).Google Scholar
  9. 9.
    S. Asgary and S. Ehsani, “MTA resorption and periradicular healing in an open-apex incisor: A case report,” The Saudi Dent., J., 24, 55-59 (2012).Google Scholar
  10. 10.
    M. Samiei, S. Shahi, N. Aslaminabadi, H. Valizadeh, Z. Aghazadeeh, S. Mahdi, and V. Pakdel, “A new simulated plazma for assesing the solubility of mineral trioxide aggregate,” Iran Endod. J., 10, No. 1, 30-34 (2015).Google Scholar
  11. 11.
    J. S. Wang, M. Tägil, H. Isaksson, A. Boström, and L. Lindgren, “Tissue reaction and material biodegradation of a calcium sulfate/apatite biphasic bone substitute in rat muscule,” J. Orthop. Translat., 6, 10-17 (2016).CrossRefGoogle Scholar
  12. 12.
    B. Mueller, D. Koch, R. Lutz, K.A. Schlegel. L. Treccani, and K. Rezwan, “A novel one-pot process for near-net-shape fabrication of open-porous resorbable hydroxyapatite/protein composites and in vivo assessment,” Mater. Sci. Eng., C., 42, 137-145 (2014).Google Scholar
  13. 13.
    Z. Dong, Y. Li, and Q. Zou, “Degradation and biocompatibility of porous nano-hydroxyapatite/polyuretane composite scaffold for bone tissue engineering,” Appl. Surf. Sci., 255, No 12, 6087-6091 (2009).CrossRefGoogle Scholar
  14. 14.
    X. Zheng, J. Hui, H. Li, C. Zhu, X. Hua, H. Ma, and D. Fan,” Fabrication of novel biodegradable porous bone scaffolds based on amphiphilic hydroxyapatite nanorods,” Mater. Sci. Eng. C, 75, No. 1, 699-705 (2017).CrossRefGoogle Scholar
  15. 15.
    Y. He, Y. Dong, F. Cui, X. Chen, and R. Lin, Ectopic osteogenesis and scaffold biodegradation of nano-hydroxyapatitechitosan in a rat model, PLOS ONEGoogle Scholar
  16. 16.
    J. Ǻberg, E. Pankotai, H. Billström, M. Weszl, S. Larsson, Z. Lacza, and H. Engqvist, “In vivo evaluation of an injectable premixed radiopaque calcium phosphate cement,” Int. J. Biomater., 1-7 (2011).Google Scholar
  17. 17.
    B. R. Pulley, T. Q. Trinh, J. C. Bentley, and J. R. Politi, “Adverse reaction to metal debris in a patient with acetabular shell loosening 8 years after ceramic-on-metal total hip arthroplasty,” Arthroplast Today, 1, 93-98 (2015).CrossRefGoogle Scholar
  18. 18.
    C. E. Pedraza, L. G. Nikolcheva, M. T. Kaartinen, J. E. Barralet, and M. D. McKee, “Osteoponin functions as an opsonin and facilitates phagocytosis by mocrophages of hydroxyaptite-coated microspheres: Implications for bone wound healing,” Bone, 43, 708-716 (2008).CrossRefGoogle Scholar
  19. 19.
    B. N. Brown, B. D. Ratner, S. B. Goodman, S. Amar, and S. F. Badylak, “Macrophage polarization: An opportunity for improved outcomes in biomterials and regenerative medicine,” Biomaterials, 33, No 15, 3792-3802. (2012).CrossRefGoogle Scholar
  20. 20.
    S. Sawhney and A. R. V. Pai, “Comparative evaluation of the calcium release from mineral trioxide aggregate and its mixture with glass ionomer cement in different proportions and time intervals – An in vitro study,” Saudi Dent., J., 27, 215-219 (2015).Google Scholar
  21. 21.
    F. Scalera, F. Gervaso, K. P. Sanosh, A. Sannino, and A. Licciulli, “Influence of the calcination temperature on morphological and mechanical properties of highly porous hydroxyapatite scaffolds,” Ceram. Int., 39, 4839-4846, (2013).CrossRefGoogle Scholar
  22. 22.
    S. Patel, S. Wei, J. Han, and W. Gao, “Transmission electron microscopy analysis of hydroxyapatie nanocrystals from cattle bones,” Mater. Charact., 109, 73-78 (2015).CrossRefGoogle Scholar
  23. 23.
    G. Poinern, R. Brundavanam, X. Thi Le, S. Djordjevic, M. Prokic, and D. Fawcett, “Thermal and ultrasonic influence in the formation of nanometer scale hydroxyapatite bio-ceramic,” Int. J. Nanomedicine, 6, 2083-2095 (2011).CrossRefGoogle Scholar
  24. 24.
    F. Stephen, T. Badylak, and W. Gilbert, “Immune response to biologic scaffold materials,” Semin. Immunol., 20, No 2, 109-116 (2008).CrossRefGoogle Scholar
  25. 25.
    C. M. Assis, L. C. Oliveira Verick, M. Santos, M. V. Fook, and A. C. Guastaldi, “Comparision of crystallinity between natural hydroxyapatite and syntetic cp-Ti/HA coatings,” Mat. Res, 8, No 2, 207-211 (2005).CrossRefGoogle Scholar
  26. 26.
    M. B. Conz, J. M. Granjeiro, and G. A. Soares, “Hydroxyapatite crystallinity does not affect the repair of critical size bone defects,” J. Appl. Oral Sci., 19, No. 4, 337-342 (2011).CrossRefGoogle Scholar
  27. 27.
    I. Knets, L. Bunina, and V. Filipenkov, “Ultrahigh-molecularweight polyethylen and hydroxylapatite based materials for replacement of bone tissue,” Mech. Compos. Mater., 29, No. 2, 181-189 (1993).CrossRefGoogle Scholar
  28. 28.
    J. Brzezinska-Miecznik, K. Haberko, M. Sitarz, M. M. Bucko, and B. Macherzynska, “Hydroxyapatite from animal bones – Extraction and properties,” Ceram. Int., 41, 4841- 4846 (2015).CrossRefGoogle Scholar
  29. 29.
    K. Parabakaran and S. Rajeswari, “Development of hydroxyapatite from natural fish bone through heat treatment,” Trends Biomater. Artif. Organs, 20, No. 1, 20-23 (2006).Google Scholar
  30. 30.
    I. Sopyan, M. Mel, S. Ramesh, and K. A. Khalid, “Porous hydroxyapatite for artificial bone applications,” Sci. Technol. Adv. Mater., 8, 116-123, (2007).CrossRefGoogle Scholar
  31. 31.
    A. M. Lopez, P. P. Del Pozo, C. M. Muela, S. O. Caicoya, C. N. Ceullar, and J. I. S. Escobar, “Maxillary sinus augmentation with bovine hydroxyapatite alone: A safe technique with predictable outcomes in patients with severe maxillary atrophy,” Revista Espanola de Cirurgia Oral y Maxilofacial, 37, No. 2, 87-92 (2015).CrossRefGoogle Scholar
  32. 32.
    A. P. Rubshtein, I. S. Trakhtenberg, E. B. Makarova, E. B. Triphonova, D. G. Bliznets, L. I. Yakovenkova, and A. B. Vladimirov, “Porous material based on spongy titanum granules: Structure, mechanical properties, and osseointegration,” Mater. Sci. Eng., C, 35, 363-369 (2014).CrossRefGoogle Scholar
  33. 33.
    J. B. Chang, W. K. Hae, H. K. Young, and E. K. Hyoun, “Hydroxyapatite bone scaffolds with controlled macrochannel pores,” J. Mater. Sci. Mater. Med., 17, 517-521 (2006).CrossRefGoogle Scholar
  34. 34.
    B. S. Kim, S. S. Yang, and J. Lee, “A polycaprolactone/cuttlefish bone derived hydroxyapatite composite porous scaffold for bone tissue engineering,” J. Biomed. Mater. Res. Part B Appl. Biomater., 102, No 5, 943-951 (2014).CrossRefGoogle Scholar
  35. 35.
    Y. Sa, F. Yang, J. R. Wijn, Y. Wang, J. G. C. Wolke, and A. J. Jansen, “Physicochemical properites and mineralization assessment of porous polymethylmethacrylate cement loaded with hydroxyapatite in simulated body fluid,” Mater. Sci. Eng. C, 61, 190-198 (2016).CrossRefGoogle Scholar
  36. 36.
    V. V. Filipenkov, L. E. Rupeks, V. M. Vitins, I. V. Knets, and V. A. Kasyanov, “Characteristics of bone tissue and composite materials on the basis of natural hydroxyapatite and endodontic cement for replacement of the tissue,” Mech. Compos. Mater., 53, 381-388 (2017).CrossRefGoogle Scholar
  37. 37.
    W. M. Al-Omari, M. S. Abu-Zaghlan, and H. M. Hammad, “Reaction of rat connective tissue to mineral trioxide aggregate and diaket,” BMC Oral Health, 11-17 (2011).Google Scholar
  38. 38.
    J. Liuyun, X. Chengdong, J. Lixin, and X. Lijuan, “Effect of hydroxyapatite with different morphology on the crystallization behavior, mechanical property and in vitro degradation of hydroxyapatite/poly(lactic-co-glycoclic) composite,” Compos. Sci. Technol., 93, 61-67 (2014).CrossRefGoogle Scholar
  39. 39.
    F. Poumier, P. Schaad, Y. Haikel, J. C. Voegel, and P. Gramain, “Dissolution of syntethic hydroxyapatite in the presence of acidic polypeptides,” J. Biomed. Mater. Res., 45, No. 2, 92-99 (1999).CrossRefGoogle Scholar
  40. 40.
    J. Moreno and F. Forriol, “Effects of preservation on the mechanical strength and chemical composition of cortical bone: an experimental study in sheep femora,” Biomaterials, 23, 2615-2619 (2002).CrossRefGoogle Scholar
  41. 41.
    J. Currey, “Incompatible mechanical properties in compact bone,” J. Theor. Biol., 231, No. 4, 569-580 (2004).CrossRefGoogle Scholar
  42. 42.
    C. K. Wei and S. J. Ding, “Acid-resistant calcium silicate-based composite implants with high-strength as load-bearing bone graft substitutes and fracture fixation devices,” J. Mech. Behav. Biomed. Mater., 62, 366-383 (2016).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Technical Physics, Faculty of Materials Science and Applied ChemistryRiga Technical UniversityRigaLatvia

Personalised recommendations