Mechanics of Composite Materials

, Volume 55, Issue 3, pp 285–296 | Cite as

Effect of Thermomechanical Loading on an Edge Crack of Finite Length in an Infinite Orthotropic Strip

  • A. Singh
  • S. Das
  • E.-M. CraciunEmail author

The purpose of this article is to determine the effect of thermal loadings on the stress intensity factor of an edge crack of finite length in an orthotropic infinite strip of finite thickness under mechanical loading. Analytical expressions of the stress intensity factor at the crack tip in point and arbitrary constant loadings are found. Numerical values of the factor at any arbitrary location on the crack face due to mechanical loading and effects of thermal loadings are computed for various crack lengths in an orthotropic material composite, and the results are presented in the form of graphs. The effects of thermal conductivity parameters on the stress intensity factor for different particular cases are also shown graphically.


  1. 1.
    V. Kushnevsky, G. Wacker, A. Chate, and A. K. Bledzki, “The effect of interphase on residual thermal stresses. 1.Single fiber composite materials,” Mech. Compos. Mater., 30, No. 5, 417-425 (1995).CrossRefGoogle Scholar
  2. 2.
    G. L. Golewski and T. Sadowski, “A failure analysis of concrete composites incorporating fly ash during torsional loading,” Compos. Struct., 183, 527-535(2018).CrossRefGoogle Scholar
  3. 3.
    R. Talreja, “Physical modelling of failure in composites,” Phil. Trans. R. Soc. A, 374 (2016), DOI:
  4. 4.
    G. Groza, A. M. Mitu, N. Pop, and T. Sireteanu, “Transverse vibrations analysis of a beam with degrading hysteretic behavior by using Euler-Bernoulli beam model,” An. St. Univ. Ovidius Constanta, 26, No. 1, 125-139 (2018).Google Scholar
  5. 5.
    G. L. Golewski, “Generalized fracture toughness and compressive strength of sustainable concrete including low calcium fly ash”, Materials, 10, No. 12, (2017), DOI:
  6. 6.
    G. L. Golewski and T. Sadowski, “The fracture toughness the KIIIc of concretes with F fly ash (FA) additive,” Construct. Build. Mater., 143, 444-454 (2017).CrossRefGoogle Scholar
  7. 7.
    G. Abderezak, “Internal structural failure analysis of anisotropic composite materials under external solicitations using “smart” materials,” Adv. Theor. Appl. Mech., 7, 21-30 (2014).CrossRefGoogle Scholar
  8. 8.
    Z. Hashin, “Failure criteria for unidirectional fiber composites,” J. Appl. Mech. 47, 329-334 (1980).CrossRefGoogle Scholar
  9. 9.
    S. W. Tsai and E. M. Wu, “A general theory of strength for anisotropic materials,” J. Comp. Mater. 5, 58-80 (1971).CrossRefGoogle Scholar
  10. 10.
    V. E. Petrova, “Interaction between a main crack and inclusions of a given orientation,” Mech. Compos. Mater., 24, No. 3, 288-294 (1988).CrossRefGoogle Scholar
  11. 11.
    S. E. Hamdi, R. M. Pitti, and F. Dubois, “Temperature variation effect on crack growth in orthotropic medium: Finite element formulation for the visco-elastic behavior in thermal cracked wood-based materials,” Int. J. Solid Struct., 115-116, 1-13 (2017).Google Scholar
  12. 12.
    J. Sladek, V. Sladek, M. Repka, and C. L. Tan, “Evaluation of the T-stress for cracks in functionally graded materials by the FEM,” Theoritical Appl. Fract. Mech., 86, 332-341 (2016).CrossRefGoogle Scholar
  13. 13.
    S. Das and L. Debnath, “On a moving Griffith crack at the interface of two bonded dissimilar orthotropic half-planes,” ZAMM- J. Appl. Math. Mech., 81, 281-287 (2001).CrossRefGoogle Scholar
  14. 14.
    P. K. Satapathy and H. Parhi, “Stresses in an orthotropic strip containing a Griffith crack,” Int. J. Eng. Sci., 16, 147-154 (1978).CrossRefGoogle Scholar
  15. 15.
    P. S. Kushwaha, “Stress intensity factor in orthotropic medium in the presence of symmetrical body forces,” Int. J. Fract., 14, 443-451 (1978).CrossRefGoogle Scholar
  16. 16.
    S. Das, B. Patra, and L. Debnath, “On elastodynamical problem of interfacial Griffith cracks in composite media,” Int. J. Eng. Sci., 42, 735-752 (2004).CrossRefGoogle Scholar
  17. 17.
    J. De and B. Patra, “Edge crack in orthotropic elastic half-plane,” Ind. J. Pure Appl. Math., 20, 923-930 (1989).Google Scholar
  18. 18.
    Y. M. Tasi, “Transversaly isotropic thermoelastic problem of uniform heat flow distributed by a penny-shaped crack,” J. Thermal Stresses, 6, 379-389 (1983).CrossRefGoogle Scholar
  19. 19.
    F. A. Struta and J. R. Barber, “Thermal stresses due to a plane crack in general anisotropic material,” J. Appl. Mech., 55, 372-376 (1988).CrossRefGoogle Scholar
  20. 20.
    B. Mukhopadhyay and R. K. Bera, “Effect of temprature on the edge crack in orthotropic elastic half-plane,” Computars Math. Appl., 24, 3-10 (1992).CrossRefGoogle Scholar
  21. 21.
    R. Ishida, “On a single edge crack problem in an elastic strip,” Archive Appl. Mech., 59, 296-303 (1989).Google Scholar
  22. 22.
    Q. Wang, X. Ji., and Y. Wang, “A note on edge cracks in an orthotropic infinite strip,” Int. J. Fract., 5, R37-R41 (1996).CrossRefGoogle Scholar
  23. 23.
    M. S. Matnuly and D. M. Nassar, “Elastostatic analysis of edge cracked orthotropic plates,” Acta Mech., 165, 17-25 (2003).CrossRefGoogle Scholar
  24. 24.
    A. Y. Akoz and T. R. Tauchert, “Thermal stresses in an orthotropic elastic semi-space,” J. Appl. Mech., 39, 87-90 (1972).CrossRefGoogle Scholar
  25. 25.
    X. S. Zhang, “The general solution to an infinite orthotropic plate with a cruciform crack under arbitrary anti-plane shear stresses,” Eng. Fract. Mech., 39, 229-233 (1991).CrossRefGoogle Scholar
  26. 26.
    J. De and B. Batra, “Thermoelastic problem of an orthotropic-elastic plane containing a cruciform crack,” Int. J. Eng. Sci., 30, 1041-1048 (1992).CrossRefGoogle Scholar
  27. 27.
    S. Das and L. Debnath, “Study of a static cruciform crack problem in an orthotropic elastic plane,” Computars Math. Appl., 40, 569-575 (2000).CrossRefGoogle Scholar
  28. 28.
    L. M. Keer, S. N. Nasser, and A. Oranratnachai, “Spontaneous growth of interacting cracks in a cruciform pattern,” Eng. Fract. Mech., 13, 15-29 (1980,).CrossRefGoogle Scholar
  29. 29.
    M. K. Kassir and K.K. Bandopadhyay, “Impact response of a cracked orthotropic medium,” ASME J. Appl. Mech., 50, 630-636 (1983).CrossRefGoogle Scholar
  30. 30.
    V. P. Netrebko, “Stress intensity factors near the cracks on the edges of openings in composite plates,” Mech. Compos. Mater., 37, No. 2, 107-114 (2001).CrossRefGoogle Scholar
  31. 31.
    M. Kh. Shorshorov, L. V. Vinogradov, and L. M. Ustinov, “Computing stress-intensity factors for cracks located at the interface between different media by the method of sections,” Mech. Composite Mater., 15, No. 6, 669-676 (1980).CrossRefGoogle Scholar
  32. 32.
    M. Marin and E. M. Craciun, “Uniqueness results for a boundary value problem in dipolar thermo-elasticity to model composite materials,” Composites: Part B: Eng., 126, 27-37 (2017).CrossRefGoogle Scholar
  33. 33.
    V. N. Burlayenko, H. Altenbach, T. Sadowski, and S. D. Dimitrova, “Computational simulations of thermal shock cracking by the virtual crack closure technique in a functionally graded plate,” Comp. Mater. Sci., 116, 11-21 (2016).CrossRefGoogle Scholar
  34. 34.
    V. Petrova, V. Tamuzs, and N. Romalis, “A survey of macro-microcrack interaction problems,” Appl. Mech. Rev., 53, No. 5, 117-146 (2000).CrossRefGoogle Scholar
  35. 35.
    R. B. Rikards, and A. K. Chate, “Elastic properties of a composite with anisotropic fibers,” Mech. Compos. Mater. 16, No. 1, 16-22 (1980).CrossRefGoogle Scholar
  36. 36.
    R. Janeliukstis, S. Ruchevskis, and A. Chate, “Classification model for damage localization in a plate structure,” Mech. Compos. Mater., 53, 725-736 (2018).CrossRefGoogle Scholar
  37. 37.
    H. F. Bueckner, “A novel principle for the computation of stress intensity factor,” ZAMM- J. Math. Mech., 50, 529-546 (1970).Google Scholar
  38. 38.
    H. F. Bueckner, “Field singularities and related integral representation,” Mechanics of Fracture-1, Noordhodd Leyden, The Netherlands, 239-319 (1973).Google Scholar
  39. 39.
    J. R. Rice, “Weight function theory for three-dimensional elastic crack analysis,” ASTM-STP, Proc. 20th Nat. Symp. on Fracture Mechanics, ASTM-STP 1020, Philadelphia, 29-57 (1989).Google Scholar
  40. 40.
    S. Das, “Weight function for a crack in a two dimensional under impact loading,” Int. J. Appl. Mech. Eng., 11, 15-28 (2006).Google Scholar
  41. 41.
    S. Das, “Weight function for an edge crack in an infinite orthotropic strip under normal point loading,” ZAMM- J. Math. Mech., 90, 271-277 (2010).CrossRefGoogle Scholar
  42. 42.
    S. Mukherjee and S. Das, “Weight function for a crack in an orthotropic medium under normal impact loading,” Int. J. Appl. Mech. Eng., 11, 915-928 (2006).Google Scholar
  43. 43.
    R. B. Hetnarski and J. Ignaczak, The Mathematical Theory of Elasticity, 2nd edition, CRC Press, Boca Raton (2010).Google Scholar
  44. 44.
    F. G. Tricomi, “On the finite Hilbert transformation,” Quality J. Math., 2, 199-221 (1951).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematical SciencesIndian Institute of Technology(BHU)VaranasiIndia
  2. 2.Faculty of Mechanical, Industrial, and Maritime Engineering“Ovidius” University of ConstantaConstantaRomania

Personalised recommendations