Advertisement

A Comparison of Closed-Form and Finite-Element Solutions for the Free Vibration of Hybrid Crossply Laminated Plates

  • M. A. Benhenni
  • B. Adim
  • T. Hassaine Daouadji
  • B. AbbèsEmail author
  • F. Abbès
  • Y. Li
  • A. Bouzidane
Article
  • 15 Downloads

The natural frequencies of hybrid cross-ply laminated plates are predicted using a high-order shear deformation theory and the three-dimensional finite-element analysis. The equations of motion for simply supported laminated hybrid rectangular plates are derived using the Hamilton principle. Closed-form solutions for antisymmetric cross-ply and angle-ply laminates are found employing the Navier solution. In the finite-element method, eight-node linear interpolation brick elements are used to model the composite plates. First, the analytical and numerical results are validated for an antisymmetric cross-ply square laminate by results available in the literature. Then, the effects of side-to-thickness ratio, aspect ratio, lamination schemes, and material properties on the fundamental frequencies for simply supported carbon/glass hybrid composite plates are investigated. Since no data are available in the literature for hybrid composite plates, the finite-element solution is used for comparison purposes. A comparison of the analytical solution with the corresponding 3D finite-element simulations shows a good accuracy of the proposed analytical solution in predicting the fundamental frequencies of hybrid cross-ply laminated plates.

Keywords

hybrid composite plate high-order shear deformation theory 3D finite-element method free vibration 

Notes

Acknowledgments

This research was supported by the French Ministry of Foreign Affairs and International Development (MAEDI), Ministry of National Education, Higher Education and Research (MENESR), and the Algerian Ministry of Higher Education and Scientific Research under Grant No. PHC Tassili 17MDU992. Their support is greatly appreciated.

References

  1. 1.
    R. D. Mindlin, “Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates,” ASME J. Appl. Mech., 18, 31-38 (1951).Google Scholar
  2. 2.
    Y. Stavski, Topics in Applied Mechanics: E. Schwerin Memorial Volume, D. Abir, F. Ollendorff and M. Reiner (eds.), Elsevier, New-York, 105-166 (1965).Google Scholar
  3. 3.
    J. M. Whitney, “Shear correction factors for orthotropic laminates under static load,” J. Appl. Mech., 40, No. 1, 302-304 (1973).Google Scholar
  4. 4.
    J. N. Reddy, “A simple higher-order theory for laminated composite plates,” J. Appl. Mech., 51, 745-52 (1984).CrossRefGoogle Scholar
  5. 5.
    J. N. Reddy, “A refined nonlinear theory of plates with transverse shear deformation,” Int. J. Solids and Struct., 20, No. 9/10, 881-896 (1984).Google Scholar
  6. 6.
    T. Kant and B. N. Pandya,”A simple finite element formulation of a higher-order theory for unsymmetrically laminated composite plates,” Compos. Struct., 9, No. 3, 215-264 (1988).CrossRefGoogle Scholar
  7. 7.
    J. G. Ren, Handbook of Ceramics and Composites, N. P. Cheremisinoff (eds), vol. 1, Marcel Dekker, New York, 413-450 (1990).Google Scholar
  8. 8.
    J. N. Reddy, “A general nonlinear third-order theory of plates with transverse shear deformation,” Int. J. Non-Linear Mech., 25, No. 6, 677-686 (1990).CrossRefGoogle Scholar
  9. 9.
    P. R. Mohan, B. P. Naganarayana, and G. Prathap, “Consistent and variationally correct finite elements for higher-order laminated plate theory, Compos. Struct., 29, No. 4, 445-456 (1994).CrossRefGoogle Scholar
  10. 10.
    A.M. Zenkour, “Generalized shear deformation theory for bending analysis of functionally graded plates”, Applied Mathematical Modelling, 30, 67-84 (2006).CrossRefGoogle Scholar
  11. 11.
    J. L. Mantari, A.S. Oktem, and C. Guedes Soares, “A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates,” Int. J. Solids and Struct., 49, 43-53 (2012).CrossRefGoogle Scholar
  12. 12.
    T. Daouadji, A. Tounsi, and E. A. Adda Bedia, “Analytical solution for bending analysis of functionally graded plates,” Scientia Iranica, Transactions B: Mechanical Engineering, 20, 516-523 (2013).Google Scholar
  13. 13.
    B. Adim, T. Hassaine Daouadji, B. Abbès, and A. Rabahi, “Buckling and free vibration analysis of laminated composite plates using an efficient and simple higher order shear deformation theory,” Mech. Indust., 17, No. 5, 512 (2016).CrossRefGoogle Scholar
  14. 14.
    R. Benferhat, T. Hassaine Daouadji, and M. Said Mansour, “Free vibration analysis of FG plates resting on the elastic foundation and based on the neutral surface concept using higher order shear deformation theory,” Comptes Rendus de Mécanique, 344, No. 9, 631-641 (2016).CrossRefGoogle Scholar
  15. 15.
    T. P. Sathishkumar, J. Naveen, and S. Satheeshkumar, “Hybrid fiber reinforced polymer composites – a review,” J. Reinf. Plastics and Compos., 33, No. 5, 454-471 (2014).CrossRefGoogle Scholar
  16. 16.
    V. V. Vasiliev and E. V. Morozov, “Mechanics and analysis of composite materials,” Elsevier Science, Oxford, (2001).Google Scholar
  17. 17.
    B. Adim, T. Hassaine Daouadji, and B. Abbès, “Buckling analysis of anti-symmetric cross-ply laminated composite plates under different boundary conditions,” Int. Appl. Mech., 52, No. 6, 661-676 (2016).CrossRefGoogle Scholar
  18. 18.
    A. K. Noor, ‘Free vibrations of multilayered composite plates,’ AIAA J., 11, No. 7, 1038-1039 (1973).Google Scholar
  19. 19.
    ABAQUS Documentation, Simulia, (2016).Google Scholar
  20. 20.
    J. M. Berthelot, Matériaux Composites: Comportement Mécanique et Analyse des Structures, Lavoisier, Paris, (2012).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. A. Benhenni
    • 1
    • 2
    • 3
  • B. Adim
    • 1
    • 2
  • T. Hassaine Daouadji
    • 1
    • 2
  • B. Abbès
    • 3
    Email author
  • F. Abbès
    • 3
  • Y. Li
    • 3
  • A. Bouzidane
    • 1
  1. 1.Département de génie civilUniversité Ibn Khaldoun TiaretTiaretAlgeria
  2. 2.Laboratoire de Géomatique et Développement DurableUniversité Ibn Khaldoun TiaretTiaretAlgeria
  3. 3.GRESPI – University of Reims Champagne-ArdenneReims cedex 2France

Personalised recommendations