Mechanics of Composite Materials

, Volume 55, Issue 1, pp 69–84 | Cite as

Three Specimen Geometries and Three Methods of Data Evaluation in Single-Fiber Pullout Tests

  • S. Zhandarov
  • C. SchefflerEmail author
  • E. Mäder
  • U. Gohs

The shapes of force–displacement curves recorded in single-fiber pullout and microbond tests are analyzed within the framework of a stress-based model of interfacial debonding. Three characteristic points allowing one to evaluate the local interfacial strength parameters, the local interfacial shear strength (IFSS), and the interfacial frictional stress, using several different methods, can be marked out in each curve. The “alternative” method based on the measured peak force and initial postdebonding force appeared to be more reliable than the “traditional” one using the debond force for calculating the local IFSS in fiber–matrix systems. The effect of specimen geometry on force–displacement curves and on calculated local interfacial strength parameters was investigated. Though the “equivalent cylinder” approximation often yields a good estimate of these parameters, there is a need for a method which would explicitly include the actual specimen geometry.


fiber-matrix interface microbond test pullout test local interfacial shear strength interfacial frictional stress 


  1. 1.
    G. V. Shiriajeva and G. D. Andreevskaya, “Method of determination of the adhesion of resins to the surface of glass fibers,” Plast. Massy, 4, 42-43 (1962).Google Scholar
  2. 2.
    B. Miller, P. Muri, and L. Rebenfeld, “A microbond method for determination of the shear strength of a fiber–resin interface,” Compos. Sci. Technol., 28, 17-32 (1987).CrossRefGoogle Scholar
  3. 3.
    L. S. Penn and E. R. Bowler, “A new approach to surface energy characterization for adhesive performance prediction,” Surf. Interfac. Anal., 3, 161-164 (1981).CrossRefGoogle Scholar
  4. 4.
    E. Cailleux, T. Cutard, and G. Bernhart, Pullout of metallic fibres from a ceramic refractory matrix,” Composites: Part A, 33, 1461-1466 (2002).CrossRefGoogle Scholar
  5. 5.
    W. Zhou, G. Yamamoto, Y. Fan, and A. Kawasaki, “In-situ characterization of interfacial shear strength in multi-walled carbon nanotube reinforced aluminum matrix composites,” Carbon, 106, 37-47 (2016).CrossRefGoogle Scholar
  6. 6.
    W. P. Boshoff, V. Mechtcherine, and G. P. A. G. van Zijl, “Characterizing the time-dependant behavior on single fibre level of SHCC: Part 2: The rate effects on fibre pullout tests,” Cement and Concrete Research, 39, 787-797 (2009).CrossRefGoogle Scholar
  7. 7.
    K. K. C. Ho, G. Kalinka, M. Q. Tran, N. V. Polyakova, and A. Bismarck, “Fluorinated carbon fibres and their suitability as reinforcement for fluoropolymers,” Compos. Sci. Technol., 67, 2699-2706 (2007).CrossRefGoogle Scholar
  8. 8.
    R. V. Subramanian and K.-H. H. Shu, Silane coupling agents for basalt fiber reinforced polymer composites, in: Molecular Characterization of Composite Interfaces, ed. A. von Rubinowicz, Springer, pp. 205-236 (2013),Google Scholar
  9. 9.
    W. Liu, J. Huang, N. Wang, and S. Lei, “The influence of moisture content on the interfacial properties of natural palm fiber–matrix composite,” Wood Sci. Technol., 49, 371-387 (2015).CrossRefGoogle Scholar
  10. 10.
    K. Tanaka, K. Minoshima, W. Grela, and K. Komai, “Characterization of te aramid/epoxy interfacial properties by means of pullout test and influence of water adsorption,” Compos. Sci. Technol., 62, 2169-2177 (2002).CrossRefGoogle Scholar
  11. 11.
    A. Kelly and W. R. Tyson, “Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum,” J. Mech. Phys. Solid, 13, 329-350 (1965).CrossRefGoogle Scholar
  12. 12.
    Y. A. Gorbatkina, Adhesive Strength of Fiber-Polymer Systems, Ellis Horwood, New York, 1992.Google Scholar
  13. 13.
    G. Désarmot and J. P. Favre, “Advances in pullout testing and data analysis,” Compos. Sci. Technol., 42, 151-187 (1991).CrossRefGoogle Scholar
  14. 14.
    N. Takeda, D. Y. Song, K. Nakata, and T. Shioya, “The effect of fiber surface treatment on the micro-fracture progress in glass fiber/Nylon 6 composites,” Compos. Interfaces, 2, 143-155 (1994).Google Scholar
  15. 15.
    S. Zhandarov and E. Mäder, “Peak force as function of the embedded length in the pullout and microbond tests: Effect of specimen geometry,” J. Adhes. Sci. Technol., 19, 817-855 (2005).CrossRefGoogle Scholar
  16. 16.
    M. R. Piggott, “Why interface testing by single-fibre methods can be misleading,” Compos. Sci. Technol., 57, 965-974 (1997).CrossRefGoogle Scholar
  17. 17.
    C. H. Liu and J. A. Nairn, “Analytical fracture mechanics of the microbond test including the effects of friction and thermal stresses,” Int. J. Adhesion Adhesives, 19, 59-70 (1999).CrossRefGoogle Scholar
  18. 18.
    S. Zhandarov, E. Pisanova, and K. Schneider, “Fiber-stretching test: a new technique for characterizing the fiber–matrix interface using direct observation of crack initiation and propagation,” J. Adhesion Sci. Technol., 14, 381-398 (2000).CrossRefGoogle Scholar
  19. 19.
    E. Pisanova, S. Zhandarov, E. Mäder, I. Ahmad, and R. J. Young, “Three techniques of interfacial bond strength estimation from direct observation of crack initiation and propagation in polymer–fibre systems,” Composites: Part A, 32, 435-443 (2001).CrossRefGoogle Scholar
  20. 20.
    D. J. Bannister, M. C. Andrews, A. J. Cervenka, and R. J. Young, “Analysis of the single-fibre pullouttest by means of Raman spectroscopy: Part II. Micromechanics of deformation for an aramid/epoxy system,” Compos. Sci. Technol., 53, 411-421 (1995).CrossRefGoogle Scholar
  21. 21.
    M. Shioya, E. Mikami, and T. Kikutani, “Analysis of single-fiber pullout from composites by using stress birefringence,” Compos. Interfaces, 4, 429-445 (1997).CrossRefGoogle Scholar
  22. 22.
    R. J. Kerans and T. A. Parthasarathy, “Theoretical analysis of the fiber pullout and pushout tests,” J. Am. Ceram. Soc., 74, 1585-1596 (1991).CrossRefGoogle Scholar
  23. 23.
    A. Hampe and C. Marotzke, “The energy release rate of the fiber/polymer matrix interface: measurement and theoretical analysis,” J. Reinf. Plastics Compos., 16, 341-352 (1997).CrossRefGoogle Scholar
  24. 24.
    S. Zhandarov and E. Mäder, “An alternative method of determining the local interfacial shear strength from force–displacement curves in the pullout and microbond tests,” Int. J. Adhesion Adhesives, 55, 37-42 (2014).CrossRefGoogle Scholar
  25. 25.
    S. F. Zhandarov, E. Mäder, and O. R. Yurkevich, “Indirect estimation of fiber/polymer bond strength and interfacial friction from maximum load values recorded in the microbond and pullout tests. Part I: Local bond strength,” J. Adhes. Sci. Technol., 16, 1171-1200 (2002).CrossRefGoogle Scholar
  26. 26.
    L. B. Greszczuk, Theoretical studies of the mechanisms of the fibre–matrix interface. Interfaces in composites, ASTM STP 452. Philadelphia: American Society for Testing and Materials, 42-48 (1969).Google Scholar
  27. 27.
    J. P. Favre, G. Désarmot, O. Sudre, and A. Vassel, “Were McGarry or Shiriajeva right to measure glass–fiber adhesion?” Compos. Interfaces, 4, 313-326 (1997).CrossRefGoogle Scholar
  28. 28.
    T. Kanda and V. C. Li, „Interface property and apparent strength of high-strength hydrophilic fiber in cement matrix,” J. Mater. Civil. Eng., 10, 5-13 (1998).CrossRefGoogle Scholar
  29. 29.
    C. K. Y. Leung and V. C. Li, “New strength-based model for the debonding of discontinuous fibers in an elastic matrix,” J. Mater. Sci., 26, 5996-6010 (1991).CrossRefGoogle Scholar
  30. 30.
    S. J. Eichhorn, J. A. Bennett, Y. T. Shyng, R. J. Young, and R. J. Davies, “Analysis of interfacial micromechanics in microdroplet model composites using synchrotron microfocus X-ray diffraction,” Compos. Sci. Technol., 66, 2197-2205 (2006).CrossRefGoogle Scholar
  31. 31.
    R. J. Scheer and J. A. Nairn, “Variational mechanics analysis of stresses and failure in microdrop debond specimens,” Compos. Engineering, 2, 641-654 (1992).CrossRefGoogle Scholar
  32. 32.
    Y. C. Gao, Y. W. Mai, and B. Cotterell, “Fracture of fiber-reinforced materials,” J. Appl. Mathem. Phys., 39, 550-572 (1988).Google Scholar
  33. 33.
    H. Stang and S. P. Shah, “Failure of fiber reinforced composites by pullout fracture,” J. Mater. Sci., 21, 953-958 (1986).CrossRefGoogle Scholar
  34. 34.
    C. K. Y. Leung, “Fracture-based two-way debonding model for discontinuous fibers in an elastic matrix,” J. Eng. Mech., 118, 2298-2318 (1992).CrossRefGoogle Scholar
  35. 35.
    J. A. Nairn, “Analytical fracture mechanics analysis of the pullout test including the effects of friction and thermal stresses,” Adv. Compos. Lett., 9, 373-383 (2000).CrossRefGoogle Scholar
  36. 36.
    S. Zhandarov, E. Pisanova, and B. Lauke, “Is there any contradiction between the stress and energy failure criteria in micromechanical tests? Part I. Crack initiation: stress-controlled or energy-controlled?” Compos. Interfaces, 5, 387-404 (1998).CrossRefGoogle Scholar
  37. 37.
    S. Zhandarov, E. Pisanova, and E. Mäder, “Is there any contradiction between the stress and energy failure criteria in micromechanical tests? Part III. Experimental observation of crack propagation in the microbond test,” J. Adhesion Sci. Technol., 19, 679-704 (2005).CrossRefGoogle Scholar
  38. 38.
    W. Brameshuber and B. Banholzer, “Eine Methode zur Beschreibung des Verbundes zwischen Faser und zementgebundener Matrix, ” Beton- und Stahlbetonbau, 96, 663-669 (2001).CrossRefGoogle Scholar
  39. 39.
    C. Scheffler, S. Zhandarov, W. Jenschke, and E. Mäder, “Poly (vinyl alcohol) fiber reinforced concrete: investigation of strain rate dependent interphase behavior with single fiber pullout test under quasi-static and high rate loading,” J. Adhesion Sci. Technol., 27, 385-402 (2013).CrossRefGoogle Scholar
  40. 40.
    S. Radl, M. Kreimer, J. Manhart, T. Griesser, A. Moser, G. Pinter, G. Kalinka, W. Kern, and S. Schlögl, „Photocleavable epoxy based materials,“ Polymer, 69, 159-168 (2015).CrossRefGoogle Scholar
  41. 41.
    S. Meretz, W. Auersch, C. Marotzke, E. Schulz, and A. Hampe, “Investigation of morphology-dependent fracture behaviour with the single-fibre pullout test,” Compos. Sci. Technol., 48, 285-290 (1993).CrossRefGoogle Scholar
  42. 42.
    I. Curosu, M. Liebscher, V. Mechtcherine, C. Bellmann, and S. Michel, “Tensile behavior of high-strength strainhardening cement-based composites (HS-SHCC) made with high-performance polyethylene, aramid and PBO fibers,” Cement and Concrete Research, 98, 71-81 (2017).CrossRefGoogle Scholar
  43. 43.
    M. Heppenstall-Butler, D. J. Bannister, and R. J. Young, “A study of transcrystalline polypropylene/single-aramid-fibre pullout behavior using Raman spectroscopy,” Composites: Part A, 27, 833-838 (1996).CrossRefGoogle Scholar
  44. 44.
    P. Frantzis and R. Baggott, “Bond between reinforcing steel fibers and magnesium phosphate/calcium aluminate binders,” Cement and Concrete Composites, 22, 187-192 (2000).CrossRefGoogle Scholar
  45. 45.
    P. Järvelä, K. W. Laitinen, J. Purola, and P. Törmälä, “The three-fibre method for measuring glass fibre to resin bond strength,” Int. J. Adhesion Adhesives, 3, 141-147 (1983).CrossRefGoogle Scholar
  46. 46.
    S. Zhandarov, E. Pisanova, and E. Mäder, “Is there any contradiction between the stress and energy failure criteria in micromechanical tests? Part II. Crack propagation: Effect of friction on force–displacement curves,” Compos. Interfaces, 7, 149-175 (2000).CrossRefGoogle Scholar
  47. 47.
    H. L. Cox, “The elasticity and strength of paper and other fibrous materials,” Brit. J. Appl. Phys., 3, 72-79 (1952).CrossRefGoogle Scholar
  48. 48.
    A. H. Nayfeh, “Thermomechanically induced interfacial stresses in fibrous composites,” Fibre Sci. Technol., 10, 195-209 (1977).CrossRefGoogle Scholar
  49. 49.
    J. A. Nairn, “Fracture mechanics of composites with residual thermal stresses,” J. Appl. Mech., 64, 804-810 (1997).CrossRefGoogle Scholar
  50. 50.
    M. C. Andrews, D. J. Bannister, and R. J. Young, “Review: the interfacial properties of aramid/epoxy model composites,” J. Mater. Sci., 31, 3893-3913 (1996).CrossRefGoogle Scholar
  51. 51.
    S. Zhandarov, E. Pisanova, E. Mäder, and J. A. Nairn, “Investigation of load transfer between the fiber and the matrix in pullout tests with fibers having different diameters,” J. Adhes. Sci. Technol., 15, 205-222 (2001).CrossRefGoogle Scholar
  52. 52.
    S. Zhandarov and E. Mäder, “Characterization of fiber/matrix interface strength: applicability of different tests, approaches and parameters,” Compos. Sci. Technol., 65, 149-160 (2005).CrossRefGoogle Scholar
  53. 53.
    S. Zhandarov and E. Mäder, “Indirect estimation of fiber/polymer bond strength and interfacial friction from maximum load values recorded in the microbond and pullout tests. Part II: Critical energy release rate,” J. Adhes. Sci. Technol., 17, 967-980 (2003).CrossRefGoogle Scholar
  54. 54.
    B. J. Carroll, “The accurate measurement of contact angle, phase contact areas, drop volume, and Laplace excess pressure in drop-on-fiber systems,” J. Colloid Interface Sci., 57, 488-495 (1976).CrossRefGoogle Scholar
  55. 55.
    R. J. Scheer and J. A. Nairn, “A comparison of several fracture mechanics methods for measuring interfacial toughness with microbond tests,” J. Adhesion, 53, 45-68 (1995).CrossRefGoogle Scholar
  56. 56.
    R. W. Goettler and K. T. Faber, “Interfacial shear stresses in fiber-reinforced glasses,” Compos. Sci. Technol., 37, 129-147 (1989).CrossRefGoogle Scholar
  57. 57.
    M. J. Pitkethly and J. B. Doble, “Characterizing the fibre/matrix interface of carbon fibre-reinforced composites using a single fibre pullout test,” Composites: 21, 389-395 (1990).CrossRefGoogle Scholar
  58. 58.
    S. J. Park, M. K. Seo, H. Y. Kim, and D. R. Lee, “Studies on PAN-based carbon fibers irradiated by Ar+ ion beams,” J. Colloid Interface Sci., 261, 393-398 (2003).CrossRefGoogle Scholar
  59. 59.
    P. H. Bischoff and S. H. Perry, Compressive behavior of concrete at high strain rates,” Mater. Struct., 24, 425-450 (1991).CrossRefGoogle Scholar
  60. 60.
    W. Ehrentraut, R. Plonka, E. Mäder, and S. L. Gao, “Pilotanlage zum Erspinnen alkaliresistenter Glasfasern — Pilot equipment for continuous spinning of alkaline resistant glass fibers,” Tech. Textilien/Technical Text., 48, 22-24, E23-25 (2005).Google Scholar
  61. 61.
    E. Mäder, K. Grundke, H. J. Jacobasch, and G. Wachinger, “Surface, interphase and composite property relations in fibre-reinforced composites,” Composites: 25, 739-744 (1994).CrossRefGoogle Scholar
  62. 62.
    B. Liu, Z. Liu, X. Wang, G. Zhang, S. Long, and J. Yang, “Interfacial shear strength of carbon fiber reinforced polyphenylene sulfide measured by the microbond test,” Polymer Testing, 32, 724-730 (2013).CrossRefGoogle Scholar
  63. 63.
    S. Zhandarov and E. Mäder, “Analysis of a pullout test with real specimen geometry. Part I: matrix droplet in the shape of a spherical segment,” J. Adhesion Sci. Technol., 27, 430-465 (2013).CrossRefGoogle Scholar
  64. 64.
    S. Zhandarov and E. Mäder, “Analysis of a pullout test with real specimen geometry. Part II: the effect of meniscus,” J. Adhesion Sci. Technol., 28, 65-84 (2014).CrossRefGoogle Scholar
  65. 65.
    S. Zhandarov and E. Mäder, “Alternative” method of pullouttest evaluation with real specimen geometry,” Abstract book of PolyComTrib-2017: Int. Conf. on Polymer Composites and Tribology, Gomel (Belarus), June 27-30, 2017.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. Zhandarov
    • 1
    • 2
  • C. Scheffler
    • 1
    Email author
  • E. Mäder
    • 1
  • U. Gohs
    • 1
  1. 1.Leibniz-Institut für Polymerforschung Dresden e.V.DresdenGermany
  2. 2.V. A. Bely Metal-Polymer Research InstituteNational Academy of Sciences of BelarusGomelBelarus

Personalised recommendations