Mechanics of Composite Materials

, Volume 54, Issue 5, pp 577–590 | Cite as

Two-Level Computation of the Elastic Characteristics of Woven Composites

  • G. I. LvovEmail author
  • O. A. Kostromitskaya

Homogenization methods in the mechanics of composites make it possible to theoretically determine the characteristics of composite materials on the basis of known properties of their structural components. For woven composites with a complex braid geometry, numerical homogenization methods are most common. In this paper, a numerical method for calculating the effective elastic properties of woven composites is developed using a two-level approach in the homogenization problem. At the microscale level, the averaged properties of yarns are calculated on the basis of known fiber and matrix properties. At the macroscale level, the stress state of the representative volume of a woven composite is analyzed, and parameters of the elasticity tensor of an equivalent homogeneous material are determined. In this case, the effective elastic characteristics of yarns found at the first stage are used, and the rotation of principal directions of the elastic properties of yarns is taken into account. For the woven carbon fiber-reinforced plastic considered, numerical results obtained by the finite-element method within the framework of the two-level approach to the homogenization of composites are presented.


woven composites numerical homogenization effective elastic properties 


  1. 1.
    R. M. Christensen, Mechanis of Composite Materials, John Wiley &КSons, New York–Chichester–Brisbane–Toronto (1979).Google Scholar
  2. 2.
    A. K. Malmeister, V. P. Tamuzh, and G. A. Teters, Strength of Polymer and Composite Materials [in Russian], Riga, Zinatne (1980).Google Scholar
  3. 3.
    A. S. Kravchuk, V. P. Maiboroda, and Yu. S. Urzhumtsev, Mechanics of Polymer and Composite Materials [in Russian], M., Nauka (1985).Google Scholar
  4. 4.
    B. E. Pobedrya Mechanics of Composite Materials [in Russian], M., Izd. Mosk. Univ. (1984).Google Scholar
  5. 5.
    J. Sendecky, Mechanics of Composite Materials, Vol. 2 [in Russian], M., Mir (1970).Google Scholar
  6. 6.
    I. Ivanov and A. Tabiei, “Three-dimensional computational micromechanical model for woven fabric composites,” Compos. Struct., 54, No. 4, 489-496 (2001).CrossRefGoogle Scholar
  7. 7.
    R. Udhayaraman and S. Mulay Shantanu, “Multi-scale approach based constitutive modelling of plain woven textile composites,” Mech. Mater., 112, 172-192 (2017).CrossRefGoogle Scholar
  8. 8.
    S. V. Lomov, D. S. Ivanov, I. Verpoest, M. Zako, T. Kurashiki, H. Nakai, and S. Hirosawa, “Meso-FE modelling of textile composites: Roadmap, data flow and algorithms,” Compos. Sci. Technol., 67, 1870-1891 (2007).CrossRefGoogle Scholar
  9. 9.
    S. V. Lomov, I. Verpoest, J. Cichosz, C. Hahn, D. S. Ivanov., and B. Verleye, “Meso-level textile composites simulations: Open data exchange and scripting,” J. Compos. Mater., 48, No. 5, 621-637 (2014).CrossRefGoogle Scholar
  10. 10.
    Barna Szabó, “Unidirectional fiber-reinforced composite laminae: Homogenization and localization,” Computers and Mathematics with Applications, 70, No. 7, 1676-1684 (2015).CrossRefGoogle Scholar
  11. 11.
    L. Gelebart, “Periodic boundary conditions for the numerical homogenization of composite tubes,” Comptes Rendus Mécanique, 339, No 1, 12-19 (2011).CrossRefGoogle Scholar
  12. 12.
    X. Liu, K. Rouf, B. Peng, and W. Yu, “Two-step homogenization of textile composites using mechanics of structure genome,” Compos. Struct., 171, 252-262 (2017).CrossRefGoogle Scholar
  13. 13.
    J. J. Espadas-Escalante, N. P. van Dijk, and P. Isaksson, “A study on the influence of boundary conditions in computational homogenization of periodic structures with application to woven composites,” Compos. Struct., 160, 529-537 (2017).CrossRefGoogle Scholar
  14. 14.
    D. Goyal, J. D. Whitcomb, and X. Tang, “Validation of full 3D and equivalent tape laminate modeling of plasticity induced non-linearity in 2 × 2 braided composites,” Composites: Part A, 39, No. 5, 747-760 (2008).CrossRefGoogle Scholar
  15. 15.
    H. Le Quang, H.-T. Le, D.-H. Nguyen, and Q.-C. He, “Two-scale homogenization of elastic layered composites with interfaces oscillating in two directions,” Mech. Mater., 75, 60-72 (2014).CrossRefGoogle Scholar
  16. 16.
    W. Ogierman and G. Kokot, “Homogenization of inelastic composites with misaligned inclusions by using the optimal pseudo-grain discretization,” Int. J. Solids and Struct., 113-114, 230-240 (2017).CrossRefGoogle Scholar
  17. 17.
    N. V. De Carvalho, S. T. Pinho, and P. Robinson, “Numerical modelling of woven composites: Biaxial loading,” Composites: Part A, 43, 1326-1337 (2012).CrossRefGoogle Scholar
  18. 18.
    S. Daryazadeh, G.. Lvov, and M. Tajdari, “A new numerical procedure for determination of effective elastic constants in unidirectional composite plates,” J. Solid Mech., 8, No. 1, 104-115 (2016).Google Scholar
  19. 19.
    E. J. Barbero, Finite Element Analysis of Composite Materials Using ANSYS, 2nd ed., CRC Press (2013).Google Scholar
  20. 20.
    A. I. Lurye, Elasticity Theory [in Russian], M., Nauka (1970).Google Scholar
  21. 21.
    V. V. Eliseev, Mechanics of Elastic Bodies [in Russian], SPb, Izd. SPb GTU (1999).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Technical University “ Kharkov Polytechnical Institute”KharkovUkraine

Personalised recommendations