Advertisement

Mechanics of Composite Materials

, Volume 54, Issue 3, pp 379–394 | Cite as

Calculation of Bending of Steel-Fiber-Reinforced Concrete Members by a Nonlinear Deformation Model with the Use of Iteration Procedures

  • E. K. Opbul
  • D. A. Dmitriev
  • A. A. Vedernikova
Article
  • 55 Downloads

Formulas for calculating deformation and strain moduli using experimental tensile deformation diagrams of a steel-fiber-reinforced concrete are derived. The block diagram of a nonlinear iterative calculation, which previously have never been shown in the literature, is presented. Results of the calculation are tabulated. The opening of cracks and deflection of a bent element are also calculated, and the results are compared with those found based on limiting states.

Keywords

concrete steel-fiber-reinforced concrete limit state nonlinear deformation model deformation modulus stress strain curvature deflection center of gravity neutral line iterative calculation 

References

  1. 1.
    G. Batson, C. Ball, E. Landers, and J. Hooks, “Flexural fatigue strength of steel fiber reinforced concrete beams,” ACJ, No. 11 (1972).Google Scholar
  2. 2.
    B. B. Broms and S. P. Shah, Mechanics of Creck Arrest in Concrete, by J. P. Romualdi and G. B. Batson. Proc. ASCE, No. 83, 147-168 (1964).Google Scholar
  3. 3.
    D. J. Hannant, “Steel fibers and light weight beams,” Concrete, No. 8 (1972).Google Scholar
  4. 4.
    J. P. Romualdi, N. R. Ramey, and S. C. Sanday, “Prevention and control of cracking by use of short random fibers,” ACJ., No. 9 (1968).Google Scholar
  5. 5.
    S. P. Shah and B. V. Rangan, “Fiber reinforced concrete properties,” ACJ., No. 2, 126-135 (1971).Google Scholar
  6. 6.
    M. J. Snyder and D. R. Lankard, “Factors affecting the flexural strength of steel fibrous concrete,” ACJ., No. 2 (1972).Google Scholar
  7. 7.
    E. K. Opbul, Effective Use of a High-Strength Reinforcement in Bent Elements without a Prestress, Dissert. Cand. Techn. Sci., (2006).Google Scholar
  8. 8.
    P. N. Balaguru, “Contribution of fibers to crack reduction of cement composites during the initial and final setting period, “ACI Materials J., No. 3, 280-288 (1994).Google Scholar
  9. 9.
    C. D. Johnston, “Fiber reinforced cements and concretes,” Advances in Concrete Technol., No. 3 (2001).Google Scholar
  10. 10.
    P. R. Tadepalli, H. B. Dhonde, Y. L. Mo, and T. T. Hsu, “Shear strength of prestressed steel fiber concrete I-beams,” Int. J. Concrete Struct. and Mater., No. 10, 53-63 (2015).Google Scholar
  11. 11.
    M. Teutsch, “Andwendung von faserbeton in beton-und-fertigteilwerken,” Betwerk-Fertigtail-Technik, No. 10, 84-89 (1997).Google Scholar
  12. 12.
    JCI Standards for Test Methods of Fibre Reinforced Concrete, Method of Test for Flexural Strength and Flexural Toughness ofFibre Reinforced Concrete (Standard SF4), Japan Concrete Institute, 44-51 (1983).Google Scholar
  13. 13.
    V. I. Morozov and A. O. Khegai, “Investigation of fibrous reinforced concrete columns with high-strength fibers,” Vest. Grazhd. Inzh., № 3, 34-37 (2011).Google Scholar
  14. 14.
    V. I. Morozov and A. O. Khegai, “Experimental investigations of element of round cross section at a joint action of longitudinal compression and transverse forces,” Sovr. Probl. Nauki i Obrazov., No. 6 (2013).Google Scholar
  15. 15.
    T. Evdokimova, V. Morozov, E. Opbul, and A. Khegai, “Experimental diagrams of fiber concrete straining under tension and compression and their implementation in calculation of bearing capacity of fiber-reinforced concrete flexural elements,” Materials Sci. Forum, No. 871, 160-165 (2016).CrossRefGoogle Scholar
  16. 16.
    N. A. Rak, “Calculation method of fibrous reinforced concrete structures with the use of deformation diagrams of reinforced concrete and steel fibers,” Mater. 3 Mezhd. Simp. “Probl. Sovr. Bet. Zhelezobet.,” 39-45, Minsk (2011).Google Scholar
  17. 17.
    SNB 5.03.01-02. Concrete and reinforced concrete structures, Building codes of Byelorussia, Ministry of Architecture and Construction of Byelorussia, Minsk (2003).Google Scholar
  18. 18.
    E. K. Opbul and T. S. Evdokimova, “Calculation of the load-carrying ability of fibrous fiber-reinforced bent elements with account of work of the tensile of zone of fibrous concrete,” St. Petersburg, SPbGASU, No. 3, 67-71 (2016).Google Scholar
  19. 19.
    T. S. Evdokimova, “Ezperimental investigation of the features of behavior of fibrous concrete in tension,” Sb. Dokl. IS acad. Chten. RAASN, Int. conf. Durability, strength and fracture mechanics of concrete, reinforced concrete and other building materials,” – SPb. SPbGASU, 100-103 (2016).Google Scholar
  20. 20.
    SP 63.13330.2012. Concrete and reinforced concrete designs. Basic propositions. SNiP 52-01-2003 (with changes № 1, 2), M., Minstroi Rossii (2015).Google Scholar
  21. 21.
    V. I. Morozov and E. K. Opbul, “Calculation of the strength bent fibrous reinforced concrete elements with a highstrength reinforcement without a prestress,” Dokl. 62 naucg. Konf. Prof., prepod., nauch. Rab., inzh., aspir. univers. Ch. 1, SPb., SPbGasu, 210-214 (2005).Google Scholar
  22. 22.
    Mmanual on the Designing of Concrete and Reinforced Concrete Structures from a Heavy Concrete without a Prestress [in Russian] (to SP 52-101-2003), M., OaO TSRIIPromzdany, (2005).Google Scholar
  23. 23.
    E. K. Opbul, E. E. Ondar, and А. Kh. B. Kaldar-ool, “Calculation of the strength of fibrous reinforced concrete bent elements with the use of a three-linear deformation diagram of the tension zone,” Nauch. Obozr. Saratov., No. 14,4. 100-107 (2016).Google Scholar
  24. 24.
    R. Braitenbyukher, “Manufacture and properties of fibrous reinforced concrete,” Beton i Zhelezobeton, 7, No. 2, 93-97 (2012).Google Scholar
  25. 25.
    V. Meshcherin, “ Prevention of cracking in concrete with the help of fibrous reinforcement,” Beton i Zhelezobeton, 6, No. 1, 50-56 (2012).Google Scholar
  26. 26.
    CNiP 2.01.07-85*. Loads and Actions [in Russian], М., (2003).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. K. Opbul
    • 1
  • D. A. Dmitriev
    • 2
  • A. A. Vedernikova
    • 1
  1. 1.St. Petersburg State Architectural-Building UniversitySt. PetersburgRussia
  2. 2.ООО “Tekton”St. PetersburgRussia

Personalised recommendations