Mechanics of Composite Materials

, Volume 54, Issue 3, pp 269–280 | Cite as

Rational Choice of Angle-Ply Composites for Identification of the Elastic Characteristics of Unidirectional Composites

  • A. A. SmerdovEmail author

Analytical formulas are derived and an analysis of sensitivity of angle-ply composite structures to deviations of their elastic characteristics is performed. It is shown that the properties of the structures are determined mainly by their degree of anisotropy - the ratio of the longitudinal elastic modulus of a unidirectional material to its transverse one. For the basic classes of composites (high-, medium-, and low-modulus carbon-fiber, organo-, and glass-fiber plastics), recommendations for a rational choice of their structures to obtain experimental results allowing one to identify the elastic characteristics of unidirectional composites are formulated.


unidirectional composite angle-ply composite elastic characteristics identification sensitivity 


  1. 1.
    E. Hog, K. Choi, and V. Komkov, Sensitivity Analysis in the Design of Structures [Russian translation], M., Mir (1988).Google Scholar
  2. 2.
    E. Hog and J. Arora, Applied Optimum Design: Mechanical Systems and Structures [Russian translation], M., Mir (1983).Google Scholar
  3. 3.
    P. A. Zinoviev and L. P. Tairova, “Identifying the properties of individual plies constituting hybrid composites,” Inverse Problems in Engineering, 2, 141-154 (1995).CrossRefGoogle Scholar
  4. 4.
    A. A. Smerdov and L. P. Tairova, “Identification of the elastic characteristics and strength of the unidirectional layer of multilayered carbon plastic — features of realization in investigating of a nanofiller,” Konstr. Kompoz. Mater., No. 2, 52-58 (2015).Google Scholar
  5. 5.
    L. P. Tairova, “Identification of strength characteristics of multilayered composites,” Vest. MGTU Baumana. Ser. Mashinostroenie (spec. vyp.), 10-21 (2005)Google Scholar
  6. 6.
    A. A. Smerdov, L. P. Tairova, A. N. Timofeev, V. S. Shaidurov, “Methods of design and research of size-stable tubular carbon plastic shells,” Konstr. Kompoz. Mater., No. 3, 12-23 (2006).Google Scholar
  7. 7.
    A. M. Dumanskii, L. P. Tairova, and A. A. Smerdov,” Investigation of deformation and strength characteristics of a carbon plastic on flat and three-layer samples,” Aerokosm. Tekhnol. 2010-2012: Sb. Nauch. Tr., M., OAO “VKP NPO mashinostroenie” i MGTU N. E. Baumana, 180-192 (2012).Google Scholar
  8. 8.
    Yu. M. Tarnopolskii and T. J. Kintsis, Methods of Static Tests of Reinforced Plastics [in Russian], M., Khimiya, (1975).Google Scholar
  9. 9.
    N. A. Alfutov, P. A. Zinovjev, and B. G. Popov, Calculation of Multilayered Plates and Shells from Composite Materials [in Russian], M., Mashinostroenie (1984).Google Scholar
  10. 10.
    A. A. Smerdov, I. A. Buyanov, and I. V. Chudnov, “Analysis of optimum combinations of requirements to developed carbon plastics for large-size space-rocket designs,” Izv. Vuz. Mashinostroenie, No. 8, 70-77 (2012).Google Scholar
  11. 11.
  12. 12.
    A. A. Smerdov, G. G. Kulish, S. A. Gusev, M. Yu. Rostovtsev, and S. V. Sokolov, “Elastodissipative characteristics of a carbon plastic made by the RTM-technology,” Konstr. Kompoz. Mater., No. 2, 21-25 (2016)Google Scholar
  13. 13.
    V. D. Merkulov, “Glass plastics. Carbom plastics. Organoplastics. Nonmetallic structural materials,” Encyclopedia, Vol. II-4, eds. A. A. Kul’kova, V. V. Vasilyeva, M., Mashinostroenie, 153-196 (2005).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.N. E. Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations