Ecological restoration as a strategy for mitigating and adapting to climate change: lessons and challenges from Brazil

  • Mercedes M. C. BustamanteEmail author
  • José Salomão Silva
  • Aldicir Scariot
  • Alexandre Bonesso Sampaio
  • Daniel Luis Mascia
  • Edenise Garcia
  • Edson Sano
  • Geraldo Wilson Fernandes
  • Giselda Durigan
  • Iris Roitman
  • Isabel Figueiredo
  • Ricardo Ribeiro Rodrigues
  • Valério D. Pillar
  • Alba Orli de Oliveira
  • Ana Claudia Malhado
  • Ane Alencar
  • Annelise Vendramini
  • Aurélio Padovezi
  • Helena Carrascosa
  • Joberto Freitas
  • José Alves Siqueira
  • Julia Shimbo
  • Leonel Graça Generoso
  • Marcelo Tabarelli
  • Rachel Biderman
  • Rafael de Paiva Salomão
  • Raul Valle
  • Brienza Junior
  • Carlos Nobre


Climate change is a global phenomenon that affects biophysical systems and human well-being. The Paris Agreement of the United Nations Framework Convention on Climate Change entered into force in 2016 with the objective of strengthening the global response to climate change by keeping global temperature rise this century well below 2 °C above pre-industrial levels and to pursue efforts to limit the temperature increase even further to 1.5 °C. The agreement requires all Parties to submit their “nationally determined contributions” (NDCs) and to strengthen these efforts in the years ahead. Reducing carbon emissions from deforestation and forest degradation is an important strategy for mitigating climate change, particularly in developing countries with large forests. Extensive tropical forest loss and degradation have increased awareness at the international level of the need to undertake large-scale ecological restoration, highlighting the need to identify cases in which restoration strategies can contribute to mitigation and adaptation. Here we consider Brazil as a case study to evaluate the benefits and challenges of implementing large-scale restoration programs in developing countries. The Brazilian NDC included the target of restoring and reforesting 12 million hectares of forests for multiple uses by 2030. Restoration of native vegetation is one of the foundations of sustainable rural development in Brazil and should consider multiple purposes, from biodiversity and ecosystem services conservation to social and economic development. However, ecological restoration still presents substantial challenges for tropical and mega-diverse countries, including the need to develop plans that are technically and financially feasible, as well as public policies and monitoring instruments that can assess effectiveness. The planning, execution, and monitoring of restoration efforts strongly depend on the context and the diagnosis of the area with respect to reference ecosystems (e.g., forests, savannas, grasslands, wetlands). In addition, poor integration of climate change policies at the national and subnational levels and with other sectorial policies constrains the large-scale implementation of restoration programs. The case of Brazil shows that slowing deforestation is possible; however, this analysis highlights the need for increased national commitment and international support for actions that require large-scale transformations of the forest sector regarding ecosystem restoration efforts. Scaling up the ambitions and actions of the Paris Agreement implies the need for a global framework that recognizes landscape restoration as a cost-effective nature-based solution and that supports countries in addressing their remaining needs, challenges, and barriers.


Landscape degradation Forestry sector Brazilian NDC Environmental monitoring Environmental policy 


Funding information

This document is based on discussions held during the Workshop Vegetation Restoration and Mitigation of Climate Change, in Brasilia, Brazil (August 18–19, 2016) financed by the Climate Land Use Alliance. We would like to thank the financial support of the Rede Clima of Brazilian Ministry of Science, Technology and Innovation. José Salomão Silva was supported by the National Council for Scientific and Technological Development (381528/2016-2).


  1. ABRAF (2013) Anuário estatístico ABRAF 2013 ano base 2012/ABRAF, BrasíliaGoogle Scholar
  2. Afonso SR, Ângelo H (2009) Market of non-wood forest products from Brazilian savanna. Ciência Florestal 19(3):317–328. Google Scholar
  3. Alexander S, Aronson J, Whaley O, Lamb D (2016) The relationship between ecological restoration and the ecosystem services concept. Ecol Soc 21(1):34Google Scholar
  4. Almeida E, Sabogal C, Júnior SB (2006) Recuperação de Áreas Alteradas na Amazônia Brasileira: Experiências locais, lições aprendidas e implicações para políticas públicas. CIFOR, BelémGoogle Scholar
  5. Alves-Pinto HN, Latawiec AE, Strassburg BB et al (2017) Reconciling rural development and ecological restoration: strategies and policy recommendations for the Brazilian Atlantic Forest. Land Use Policy 60:419–426Google Scholar
  6. Andoh J, Lee Y (2018) Forest transition through reforestation policy integration: a comparative study between Ghana and the Republic of Korea. Forest Policy Econ 90:12–21Google Scholar
  7. Araújo SMVG (2017) Desafios do Ibama para a gestão ambiental no Brasil. Accessed 17 Dec 2018
  8. Assunção J, Gandour C, Rocha R (2015) Deforestation slowdown in the Brazilian Amazon: prices or policies? Environ Dev Econ 20(6):697–722Google Scholar
  9. Bae JS, Joo RW, Kim Y-S (2012) Forest transition in South Korea: reality, path and drivers. Land Use Policy 29(1):198–207Google Scholar
  10. Barbier E (2007) Valuing ecosystem services as productive inputs. Econ Policy 22(49):178–229Google Scholar
  11. Barbosa LM, Barbosa JM, Barbosa KC et al (2003) Recuperação florestal com espécies nativas no estado de São Paulo: pesquisas apontam mudanças necessárias. Florestar Estatístico 6(1):28–34Google Scholar
  12. Betts RA (2005) Integrated approaches to climate–crop modelling: needs and challenges. Philos Trans R Soc Lond B Biol Sci 360(1463):2049–2065Google Scholar
  13. Beutler JF, Bertol I, Veiga M, Wildner LP (2003) Perdas de solo e água num Latossolo Vermelho aluminoférrico submetido a diferentes sistemas de preparo e cultivo sob chuva natural. Rev Bras Ciênc Solo 27:509–517Google Scholar
  14. Biringer J (2003) Forest ecosystems threatened by climate change: promoting long-term forest resilience. In: Hansen LJ, Biringer JL, Hoffman JR (eds) Buying time: a user’s manual for building resistance and resilience to climate change in natural systems. WWF, Washington, pp 41–69Google Scholar
  15. Biringer J, Hansen LJ (2005) Restoring forest landscapes in the face of climate change. In: Mansourian S, Vallauri D, Dudley N (eds) Forest restoration in landscapes: beyond planting trees. Springer, New York, pp 31–37Google Scholar
  16. Blignaut JN, Aronson J (2008) Getting serious about maintaining biodiversity. Conserv Lett 1:12–17Google Scholar
  17. Bonan GB (2008) Forests and climate change: forcings, feedbacks and the climate benefit of forests. Science 320(5882):1444–1449Google Scholar
  18. Brancalion PHS, Viani RA, Calmon M et al (2013) How to organize a large-scale ecological restoration program? The framework developed by the Atlantic Forest Restoration Pact in Brazil. J Sustain For 32(7):728–744Google Scholar
  19. Brancalion PHS, Garcia LC, Loyola C et al (2016) A critical analysis of the Native Vegetation Protection Law of Brazil (2012): updates and ongoing initiatives. Natureza Conservação 14(1):1–15Google Scholar
  20. Brown AE, Zhang L, McMahon TA et al (2005) A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J Hydrol 310:28–61Google Scholar
  21. Buckingham K, Hanson C (2015) The restoration diagnostic case example: South Korea. World Resources Institute. 8 pp. Accessed 12 Dec 2017
  22. Bullock JM, Aronson J, Newton AC, Pywell RF, Rey-Benayas JM (2011) Restoration of ecosystem services and biodiversity. Trends Ecol Evol 26:541–549Google Scholar
  23. Calmon M, Brancalion PHS, Paese A, Aronson J, Castro P, da Silva SC, Rodrigues RR (2011) Emerging threats and opportunities for large-scale ecological restoration in the Atlantic Forest of Brazil. Restor Ecol 19(2):154–158Google Scholar
  24. Cao S, Zhang J (2015) Political risks arising from the impacts of large-scale afforestation on water resources of the Tibetan Plateau. Gondwana Res 28(2):898–903Google Scholar
  25. Cao S, Tian T, Chen L, Dong X, Yu X, Wang G (2010) Damage caused to the environment by reforestation policies in arid and semi-arid areas of China. Ambio 39:279–283Google Scholar
  26. Cao S, Chen L, Shankman D, Wang C, Wang X, Zhang H (2011) Excessive reliance on afforestation in China’s arid and semi-arid regions: lessons in ecological restoration. Earth-Sci Rev 104:240–245Google Scholar
  27. Cardinale BJ, Duffy JE, Gonzalez AG, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Corrigendum: biodiversity loss and its impact on humanity. Nature 486:59–67Google Scholar
  28. Chazdon RL (2008) Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320(5882):1458–1460Google Scholar
  29. Chazdon RL, Guariguata MR (2016) Natural regeneration as a tool for large-scale forest restoration in the tropics: prospects and challenges. Biotropica 48(6):716–730Google Scholar
  30. Chazdon RL, Uriarte M (2016) Natural regeneration in the context of large-scale forest and landscape restoration in the tropics. Biotropica 48(6):707–715Google Scholar
  31. Chazdon RL, Broadbent EN, Rozendaal DMA et al (2016) Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci Adv 2(5):1–10Google Scholar
  32. Chazdon RL, Brancalion PHS, Lamb D, Laestadius L, Calmon M, Kumar C (2017) A policy-driven knowledge agenda for global forest and landscape restoration. Conserv Lett 10(1):125–132Google Scholar
  33. Coe MT, Latrubesse EM, Ferreira ME, Amsler ML (2011) The effects of deforestation and climate variability on the streamflow of the Araguaia River, Brazil. Biogeochemistry 105(1–3):119–131Google Scholar
  34. Crookes DJ, Blignautb JN, de Witc MP et al (2013) System dynamic modelling to assess economic viability and risk trade-offs for ecological restoration in South Africa. J Environ Manag 120:138–147Google Scholar
  35. Cunningham SC, Mac Nallyb R, Bakerc PJ et al (2015) Balancing the environmental benefits of reforestation in agricultural regions. Perspect Plant Ecol Evol Syst 17:301–317Google Scholar
  36. De Groot R, Blignaut J, van der Ploeg S et al (2013) Benefits of investing in ecosystem restoration. Conserv Biol 27(6):1286–1293Google Scholar
  37. de Oliveira JAP (2009) The implementation of climate change related policies at the subnational level: an analysis of three countries. Habitat Int 33(3):253–259Google Scholar
  38. Dean W (1996) A ferro e fogo: a história e a devastação da Mata Atlântica brasileira. Cia. das Letras, São PauloGoogle Scholar
  39. Deng L, Yana W, Zhangb Y, Shangguan Z (2016) Severe depletion of soil moisture following land-use changes for ecological restoration: evidence from northern China. For Ecol Manag 366:1–10Google Scholar
  40. Devoto M, Bailey S, Craze P, Memmott J (2012) Understanding and planning ecological restoration of plant-pollinator networks. Ecol Lett 15:319–328Google Scholar
  41. Di Gregorio M, Nurrochmat DR, Paavola J, Sari IM et al (2017) Climate policy integration in the land use sector: mitigation, adaptation and sustainable development linkages. Environ Sci Pol 67:35–43Google Scholar
  42. Dias RA, Bastazini VAG, Gonçalves MSS, Bonow FC, Müller SC (2013) Shifts in composition of avian communities related to temperate-grassland afforestation in southeastern South America. Iheringia Sér Zool 103(1):12–19Google Scholar
  43. Díaz S, Demissew S, Carabias J, Joly C, Lonsdale M, Ash N, Larigauderie A, Adhikari JR, Arico S, Báldi A, Bartuska A, Baste IA, Bilgin A, Brondizio E, Chan KMA, Figueroa VE, Duraiappah A, Fischer M, Hill R, Koetz T, Leadley P, Lyver P, Mace GM, Martin-Lopez B, Okumura M, Pacheco D, Pascual U, Pérez ES, Reyers B, Roth E, Saito O, Scholes RJ, Sharma N, Tallis H, Thaman R, Watson R, Yahara T, Hamid ZA, Akosim C, al-Hafedh Y, Allahverdiyev R, Amankwah E, Asah ST, Asfaw Z, Bartus G, Brooks LA, Caillaux J, Dalle G, Darnaedi D, Driver A, Erpul G, Escobar-Eyzaguirre P, Failler P, Fouda AMM, Fu B, Gundimeda H, Hashimoto S, Homer F, Lavorel S, Lichtenstein G, Mala WA, Mandivenyi W, Matczak P, Mbizvo C, Mehrdadi M, Metzger JP, Mikissa JB, Moller H, Mooney HA, Mumby P, Nagendra H, Nesshover C, Oteng-Yeboah AA, Pataki G, Roué M, Rubis J, Schultz M, Smith P, Sumaila R, Takeuchi K, Thomas S, Verma M, Yeo-Chang Y, Zlatanova D (2015) The IPBES Conceptual Framework—connecting nature and people. Curr Opin Environ Sustain 14:1–16Google Scholar
  44. do Nascimento Nadruz V, Gallardo ALCF, Montaño M et al (2018) Identifying the missing link between climate change policies and sectoral/regional planning supported by Strategic Environmental Assessment in emergent economies: lessons from Brazil. Renew Sust Energ Rev 88:46–53Google Scholar
  45. Durigan G, Melo ACG (2011) An overview of public policies and research on ecological restoration in the state of São Paulo, Brazil. In: Figueiroa EB (ed) Biodiversity conservation in the Americas: lessons and policy recommendations. Editorial FEN-Universidad de Chile, Santiago, pp 320–355Google Scholar
  46. Durigan G, Guerin N, da Costa JN (2013) Ecological restoration of Xingu Basin headwaters: motivations, engagement, challenges and perspectives. Philos Trans R Soc Lond Ser B Biol Sci 368(1619):1–9Google Scholar
  47. Faggin JM, Behagel JH (2017) Translating sustainable forest management from the global to the domestic sphere: the case of Brazil. Forest Policy Econ 85(1):22–31Google Scholar
  48. Farley KA, Jobbágy EG, Jackson RB (2005) Effects of afforestation on water yield: a global synthesis with implications for policy. Glob Chang Biol 11:1565–1576Google Scholar
  49. Fengler FH, Bressane A, Carvalho MM, Longo RM, de Medeiros GA, de Melo WJ, Jakovac CC, Ribeiro AI (2017) Forest restoration assessment in Brazilian Amazonia: a new clustering-based methodology considering the reference ecosystem. Ecol Eng 108:93–99Google Scholar
  50. Fernandes GW, Coelho MS, Machado RB, Ferreira ME, Aguiar LMS, Dirzo R, Scariot A, Lopes CR (2016) Afforestation of savannas: an impending ecological disaster. Natureza Conservação 14(2):146–151Google Scholar
  51. Foley JA, DeFries R, Asner GP et al (2005) Global consequences of land use. Science 309(5734):570–574Google Scholar
  52. Freire JM, Urzedo DI, Piña-Rodrigues FC (2017) A realidade das sementes nativas no Brasil: desafios e oportunidades para a produção em larga escala. Seed News 21(5):24–28Google Scholar
  53. Gatica-Saavedra P, Echeverría C, Nelson CR (2017) Ecological indicators for assessing ecological success of forest restoration: a world review. Restor Ecol 25(6):850–857Google Scholar
  54. Gibbs HK, Salmon JM (2015) Mapping the world’s degraded lands. Appl Geogr 57:12–21Google Scholar
  55. Gibbs HK, Rausch L, Munger J, Schelly I, Morton DC, Noojipady P, Soares-Filho B, Barreto P, Micol L, Walker NF (2015) Brazil’s Soy Moratorium. Science 347(6220):377–378Google Scholar
  56. Godar J, Gardner TA, Tizado EJ, Pacheco P (2014) Actor-specific contributions to the deforestation slowdown in the Brazilian Amazon. Proceedings of the National Academy of Sciences 111(43):15591–96.
  57. Government of Costa Rica—GOCR (2011) Propuesta para la Preparación de Readiness R-PP. Submitted to FCPF April 2011. San José, Costa Rica 1-150pp. Accessed 12 Dec 2017
  58. Hagger V, Dwyer J, Wilson K (2017) What motivates ecological restoration? Restor Ecol 25(5):832–843Google Scholar
  59. Hanson C, Yonavjak L, Clarke C et al (2010) Southern forests for the future. World Resources Institute, Washington. Accessed 12 Dec 2017
  60. Harris JA, Hobbs RJ, Higgs E, Aronson J (2006) Ecological restoration and global climate change. Restor Ecol 14(2):170–176. Google Scholar
  61. Heikkila T, Gerlak AK (2016) Investigating collaborative processes over time: a 10-year study of the South Florida Ecosystem Restoration Task Force. Am Rev Public Adm 46:180–200Google Scholar
  62. Hill R, Grant C, George M (2012) A typology of indigenous engagement in Australian environmental management: implications for knowledge integration and social-ecological system sustainability. Ecol Soc 17:1–17Google Scholar
  63. Hobbs RJ, Walker LR, Walker J (2007) Integrating restoration and succession. In: Walker LR, Walker J, Hobbs RJ (eds) Linking restoration and ecological succession. Springer, New York, pp 168–179Google Scholar
  64. Holl KD (2017) Research directions in tropical forest restoration. Ann Mo Bot Gard 102(2):237–250Google Scholar
  65. Indústria Brasileira de Árvores—Ibá (2014) Anuário da Indústria Brasileira de Árvores. Accessed 12 Dec 2017
  66. Instituto Escolhas (2016) Quanto Custa Reflorestar 12 Milhões de Hectares? Instituto Escolhas, São PauloGoogle Scholar
  67. International Union for Conservation of Nature and Natural Resources—IUCN (2016) In: Moraes MA (ed) Forest landscape restoration in Brazil. UICN, BrasíliaGoogle Scholar
  68. Isbell F, Craven D, Connolly J (2015) Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526:574–577Google Scholar
  69. Jackson RB, Jobbágy EG, Avissar R (2005) Trading water for carbon with biological carbon sequestration. Science 30:1944–1947Google Scholar
  70. Jenkins A, Murray B et al (2010) Valuing ecosystem services from wetlands restoration in the Mississippi Alluvial Valley. Ecol Econ 69:1051–1061Google Scholar
  71. Jiang X, Lu D, Moran E, Calvi MF, Dutra LV, Li G (2018) Examining impacts of the Belo Monte hydroelectric dam construction on land-cover changes using multitemporal Landsat imagery. Appl Geogr 97:35–47Google Scholar
  72. Kaimowitz D, Smith J (2001) Soybean technology and the loss of natural vegetation in Brazil and Bolivia. In: Angelsen A, Kaimowitz D (eds) Agricultural technologies and tropical deforestation. CABI Publishing, Wallingford, Oxon, pp 195–211Google Scholar
  73. Knutti R, Rogelj J, Sedláček J, Fischer EM (2016) A scientific critique of the two-degree climate change target. Nat Geosci 9:13–18Google Scholar
  74. Kollmann J, Meyer ST, Bateman R (2016) Integrating ecosystem functions into restoration ecology-recent advances and future directions. Restor Ecol 24(6):722–730Google Scholar
  75. Korean Forest Service—KFS (2010) Current status of forests. Accessed 12 Dec 2017
  76. Korean Forest Service—KFS (2013) Korean forests at a glance 2013. Accessed 12 Dec 2017
  77. Lamb D, Gilmour D (2003) Rehabilitation and restoration of degraded forests. IUCN and WWF, Gland, Cambridge, and GlandGoogle Scholar
  78. Latawiec AE, Strassburg BBN, Brancalion PHS, Rodrigues RR, Gardner T (2015) Creating space for large-scale restoration in tropical agricultural landscapes. Front Ecol Environ 13(4):211–218Google Scholar
  79. Leite MGP, Fujaco MAG (2010) A long-term annual water balance analysis of the Aracuai River basin, Brazil. J Geogr Syst 20:938–946Google Scholar
  80. Lenschow A (2002) “Greening” the European Union: are there lessons to be learned for international environmental policy? Glob Environ Chang 12:241–245Google Scholar
  81. Lestrelin G, Pelletreau A, Valentin C (2007) Local knowledge and land degradation: a participatory case study in the uplands of the Lao PDR. In: Gebbie L, Glendinning A, Lefroy-Braun R, Victor M (eds) Proceedings of the 2nd international conference on sustainable sloping lands and watershed management: linking research to strengthen upland policies and practices, pp 270-286Google Scholar
  82. Li Y, Piao S, Li LZ, Chen A et al (2018) Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci Adv 4(5):eaar4182Google Scholar
  83. Lindenmayer D, Hobbs RJ, Montague-Drake R et al (2008) A checklist for ecological management of landscapes for conservation. Ecol Lett 11(1):78–91Google Scholar
  84. Liu J, Liang M, Li L, Long H, de Jong W (2017) Comparative study of the forest transition pathways of nine Asia-Pacific countries. Forest Policy Econ 76:25–34Google Scholar
  85. Loomis J, Kent P, Strange L, Fausch K, Covich A (2000) Measuring the total economic value of restoring ecosystem services in an impaired river basin: results from a contingent valuation survey. Ecol Econ 33:103–117Google Scholar
  86. Mansourian S (2016) Understanding the relationship between governance and forest landscape restoration. Conserv Soc 14(3):267–278Google Scholar
  87. Maron M, Cockfield G (2008) Managing trade-offs in landscape restoration and revegetation projects. Ecol Appl 18(8):2041–2049Google Scholar
  88. Maya ROC (1966) A Floresta da Tijuca. Centro de conservação da Natureza. Ed. Estado da Guanabara, Rio de JaneiroGoogle Scholar
  89. Meli P, Brancalion PHS (2017) Contrasting regulatory frameworks to govern riparian forest restoration in Mexico and Brazil: current status and needs for advances. World Dev Perspect 5:60–62Google Scholar
  90. Melo FPL, Pinto SRR, Brancalion PHS, Castro PS, Rodrigues RR, Aronson J, Tabarelli M (2013) Priority setting for scaling-up tropical forest restoration projects: early lessons from the Atlantic Forest Restoration Pact. Environ Sci Pol 33:395–404. Google Scholar
  91. Méndez-Toribio M, Martínez-Garza C, Cecconc E, Guariguata MR (2017) Current ecological restoration plans in Latin America: progress and omissions. Ciencias Ambientales 51(2):1–30Google Scholar
  92. Ministério do Meio Ambiente—MMA (2011) Pagamentos por Serviços Ambientais na Mata Atlântica: lições aprendidas e desafios. Série Biodiversidade, 42. Guedes FB and Seehusen SE (eds), BrasíliaGoogle Scholar
  93. Ministério do Meio Ambiente—MMA (2016) Documento-base para subsidiar os diálogos estruturados sobre a elaboração de uma estratégia de implementação e financiamento da Contribuição Nacionalmente Determinada do Brasil ao Acordo de Paris. Accessed 12 Dec 2017
  94. Ministério do Meio Ambiente—MMA (2017) Plano Nacional de Recuperação da Vegetação Nativa. MMA, BrasíliaGoogle Scholar
  95. Minnemeyer S, Laestadius L, Sizer N et al (2011) A world of opportunity. World Resources Institute, Washington, DC. Accessed 12 Dec 2017
  96. Nelson E, Mendoza G, Regetz J, Polasky S, Tallis H, Cameron DR, Chan KMA, Daily GC, Goldstein J, Kareiva PM, Lonsdorf E, Naidoo R, Ricketts TH, Shaw MR (2009) Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front Ecol Environ 7(1):4–11Google Scholar
  97. Nosetto MD, Jobbágy EG, Paruelo JM (2005) Land-use change and water losses: the case of grassland afforestation across a soil textural gradient in central Argentina. Glob Chang Biol 11:1101–1117Google Scholar
  98. Noss R (2001) Beyond Kyoto: forest management in a time of rapid climate change. Conserv Biol 15(3):578–590Google Scholar
  99. Ostrom E, Cox M (2010) Moving beyond panaceas: a multi-tiered diagnostic approach for social-ecological analysis. Environ Conserv 37:451–463Google Scholar
  100. Overbeck GE, Hermann J-M, Andrade BO, Boldrini II, Kiehl K, Kirmer A, Koch C, Kollmann J, Meyer ST, Müller SC, Nabinger C, Pilger GE, Trindade JPP, Vélez-Martin E, Walker EA, Zimmermann DG, Pillar VD (2013) Restoration ecology in Brazil—time to step out of the forest. Nat Conservação 11:92–95Google Scholar
  101. Overbeck GE, Vélez-Martin E, Scarano FR et al (2015) Conservation in Brazil needs to include non-forest ecosystems. Divers Distrib 21:1455–1460Google Scholar
  102. Pacheco P (2012) Soybean and oil palm expansion in South America: a review of main trends and implications. CIFOR Working Paper 90, CIFOR, IndonesiaGoogle Scholar
  103. Palmer MA, Ambrose RF, LeRoy PN (2006) Ecological theory and restoration ecology. In: Falk DA, Palmer MA, Zedler JB (eds) Foundations of restoration ecology. Island Press, Washington, pp 1–10Google Scholar
  104. Park MS, Youn YC (2017) Reforestation policy integration by the multiple sectors toward forest transition in the Republic of Korea. Forest Policy Econ 76:45–55Google Scholar
  105. Pearson TR, Brown S, Murray L, Sidman G (2017) Greenhouse gas emissions from tropical forest degradation: an underestimated source. Carbon Balance Manag 12(3):1–11Google Scholar
  106. Pinheiro A, Teixeira LP, Kaufmann V (2009) Capacidade de infiltração de água em solos sob diferentes usos e práticas de manejo agrícola. Rev Ambient Água 4:188–199Google Scholar
  107. Pitta TP, Mendonça ML (2015) A empresa Radar S/A e a especulação com terras no Brasil. Outras Expressões, São PauloGoogle Scholar
  108. Pocewicz A, Garcia E (2016) Deforestation facilitates widespread stream habitat and flow alteration in Brazilian Amazon. Biol Conserv 203:252–259Google Scholar
  109. Prack K, Marrs R et al (2007) Manipulation of succession. In: Walker LR, Walker J, Hobbs RJ (eds) Linking restoration and ecological succession. Springer, New York, pp 121–149Google Scholar
  110. Reed MS, Buenemann M, Atlhopheng J (2011) Cross-scale monitoring and assessment of land degradation and sustainable land management: a methodological framework for knowledge management. Land Degrad Dev 22:261–271Google Scholar
  111. Richards RC, Rerolle J, Aronson J, Pereira PH, Gonçalves H, Brancalion PHS (2015) Governing a pioneer program on payment for watershed services: stakeholder involvement, legal frameworks and early lessons from the Atlantic forest of Brazil. Ecosyst Serv 16:23–32Google Scholar
  112. Rizek R (2013) Fomentos a projetos de restauração ecológica. In: Políticas Públicas para a Restauração Ecológica e Conservação da Biodiversidade. Instituto de Botânica—SMA, São PauloGoogle Scholar
  113. Roberts L, Stone R, Sugden A (2009) The rise of ecological restoration. Science 325(5940):555Google Scholar
  114. Rochedo PR, Soares-Filho B, Schaeffer R et al (2018) The threat of political bargaining to climate mitigation in Brazil. Nat Clim Chang 8:695–698Google Scholar
  115. Rodrigues RR, Lima RAF, Gandolfi S, Nave AG (2009) On the restoration of high diversity forests: 30 years of experience in the Brazilian Atlantic Forest. Biol Conserv 142:1242–1251Google Scholar
  116. Rodrigues RR, Gandolfi S, Nave AG (2011) Large-scale ecological restoration of high-diversity tropical forests in SE Brazil. For Ecol Manag 261:1605–1613Google Scholar
  117. Rogelj J, den Elzen M, Höhne N, Fransen T, Fekete H, Winkler H, Schaeffer R, Sha F, Riahi K, Meinshausen M (2016) Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534:631–639Google Scholar
  118. Sader AS, Joyce AT (1988) Deforestation. Rates and Trends in Costa Rica, 1940 to 1983 Biotropica 20(1):11–19Google Scholar
  119. Santana CAA (2002) Estrutura e florística de fragmentos de florestas secundárias de encosta no Município do Rio de Janeiro. Dissertation, Universidade Federal Rural do Rio de JaneiroGoogle Scholar
  120. Scariot A (2013) Land sparing or land sharing: the missing link. Front Ecol Environ 11:177–178Google Scholar
  121. Secretaria de Assuntos Estratégicos—SAE (2013) Impacto da revisão do código florestal: como viabilizar o grande desafio adiante? Accessed 12 Dec 2017
  122. Shiferaw BA, Okello J, Reddy RV (2009) Adoption and adaptation of natural resource management innovations in smallholder agriculture: reflections on key lessons and best practices. Environ Dev Sustain 11:601–619Google Scholar
  123. Silva JA, Nobre AD, Manzatto CV (2011) O código florestal e a ciência: contribuições para o diálogo. Sociedade Brasileira para o Progresso da. Ciência: Academia Brasileira de Ciência, São PauloGoogle Scholar
  124. Silva APM, Schweizer D, Marques HR (2017) Can current native tree seedling production and infrastructure meet an increasing forest restoration demand in Brazil? Restor Ecol 25(4):509–515Google Scholar
  125. Soares-Filho B, Rajão R, Macedo M (2014) Cracking Brazil’s forest code. Science 344:363–364Google Scholar
  126. Society for Ecological Restoration International—SER (2004) Science and policy working group the SER International Primer on ecological restoration. Society for Ecological Restoration International. Tucson, ArizonaGoogle Scholar
  127. Sousa PM (2005) Análise do licenciamento ambiental como instrumento de política do meio ambiente no Rio Grande do Norte—Período 1992–2003. Dissertation, Universidade Federal do Rio Grande do NorteGoogle Scholar
  128. Spera SA, Galford GL, Coe MT, Macedo MN, Mustard JF (2016) Land-use change affects water recycling in Brazil’s last agricultural frontier. Glob Chang Biol 22:3405–3413Google Scholar
  129. Strassburg BBN, Barros FSM, Crouzeilles R, Iribarrem A, Santos JS, Silva D, Sansevero JBB, Alves-Pinto HN, Feltran-Barbieri R, Latawiec AE (2016) The role of natural regeneration to ecosystem services provision and habitat availability: a case study in the Brazilian Atlantic Forest. Biotropica 48(6):890–899Google Scholar
  130. Suding KN (2011) Toward an era of restoration in ecology: successes, failures, and opportunities ahead. Annu Rev Ecol Evol Syst 42(42):465–487Google Scholar
  131. Suding K, Higgs E, Palmer M, Callicott JB, Anderson CB, Baker M, Gutrich JJ, Hondula KL, LaFevor MC, Larson BMH, Randall A, Ruhl JB, Schwartz KZS (2015) Committing to ecological restoration. Science 348:638–640Google Scholar
  132. Suganuma MS, Durigan G (2015) Indicators of restoration success in riparian tropical forests using multiple reference ecosystems. Restor Ecol 23(3):238–251Google Scholar
  133. Turner WR, Oppenheimer M, Wilcove DS (2009) A force to fight global warming. Nature 462:278–279Google Scholar
  134. United Nations Framework Convention on Climate Change—UNFCCC (1992) Report No. FCCC/INFORMAL/84 Accessed 12 Dec 2017
  135. United Nations Framework Convention on Climate Change—UNFCCC (2015) Adoption of the Paris Agreement. Report n° FCCC/CP/2015/L.9/Rev.1
  136. Veldman JW, Overbeck GE, Negreiros D, Mahy G, le Stradic S, Fernandes GW, Durigan G, Buisson E, Putz FE, Bond WJ (2015a) Tyranny of trees in grassy biomes. Science 347:484–485Google Scholar
  137. Veldman JW, Overbeck GE, Negreiros D, Mahy G, le Stradic S, Fernandes GW, Durigan G, Buisson E, Putz FE, Bond WJ (2015b) Where tree planting and forest expansion are bad for biodiversity and ecosystem services. Bioscience 65(10):1011–1018Google Scholar
  138. Walker LR, del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, CambridgeGoogle Scholar
  139. Wiener JB (2015) Towards an effective system of monitoring, reporting, and verification. In: Barrett S, Carraro C, de Melo J (eds) Towards a workable and effective climate regime. Centre for Economic Policy ResearchGoogle Scholar
  140. World Resources Institute—WRI (2014) The role of natural regeneration in large-scale forest and landscape restoration: challenge and opportunity building the foundation for a global natural regeneration partnership. In: Org. União Internacional para a Conservação da Natureza—UICN, International Institute for Sustainability—IIS, People and Reforestation in the Tropics—PARTNERS (eds) 56 ppGoogle Scholar
  141. Xu J, Yin R, Li Z, Liu C (2006) China’s ecological rehabilitation: unprecedented efforts, dramatic impacts, and requisite policies. Ecol Econ 57:595–607Google Scholar
  142. Xu J, van Noordwijk M, He J, Kim KJ, Jo RS, Pak KG, Kye UH, Kim JS, Kim KM, Sim YN, Pak JU, Song KU, Jong YS, Kim KC, Pang CJ, Ho MH (2012) Participatory agroforestry development for restoring degraded sloping land in DPR Korea. Agrofor Syst 85:291–303Google Scholar
  143. Young CEF (2016) Estudos e produção de subsídios técnicos para a construção de uma Política Nacional de Pagamento por Serviços. Final Report. Rio de Janeiro, Instituto de Economia, UFRJ, 93ppGoogle Scholar
  144. Zhenghu D, Honglang X, Xinrong L, Zhibao D, Gang W (2004) Evolution of soil properties on stabilized sands in the Tengger Desert, China. Geomorphology 59:237–246Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Mercedes M. C. Bustamante
    • 1
    Email author
  • José Salomão Silva
    • 1
  • Aldicir Scariot
    • 2
  • Alexandre Bonesso Sampaio
    • 3
  • Daniel Luis Mascia
    • 2
  • Edenise Garcia
    • 4
  • Edson Sano
    • 5
  • Geraldo Wilson Fernandes
    • 6
  • Giselda Durigan
    • 7
    • 8
  • Iris Roitman
    • 1
  • Isabel Figueiredo
    • 9
  • Ricardo Ribeiro Rodrigues
    • 10
  • Valério D. Pillar
    • 11
  • Alba Orli de Oliveira
    • 12
  • Ana Claudia Malhado
    • 13
  • Ane Alencar
    • 14
  • Annelise Vendramini
    • 15
  • Aurélio Padovezi
    • 16
  • Helena Carrascosa
    • 17
  • Joberto Freitas
    • 18
  • José Alves Siqueira
    • 19
  • Julia Shimbo
    • 14
  • Leonel Graça Generoso
    • 20
  • Marcelo Tabarelli
    • 21
  • Rachel Biderman
    • 16
  • Rafael de Paiva Salomão
    • 22
  • Raul Valle
    • 20
  • Brienza Junior
    • 23
  • Carlos Nobre
    • 24
  1. 1.Department of EcologyUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Laboratory of Ecology and ConservationEMBRAPA-Recursos Genéticos e BiotecnologiaBrasíliaBrazil
  3. 3.National Center for Research and ConservationInstituto Chico Mendes de Conservação da BiodiversidadeBrasíliaBrazil
  4. 4.The Nature Conservancy—TNCBelémBrazil
  5. 5.Brazilian Institute of the Environment and Renewable Natural Resources – IBAMABrasíliaBrazil
  6. 6.Department of General BiologyUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  7. 7.Laboratory of Ecology and Forest HydrologyInstituto FlorestalAssisBrazil
  8. 8.Laboratory of Ecology and Forest Hydrology, Universidade Estadual de CampinasCampinasBrazil
  9. 9.Instituto Sociedade, População e Natureza - ISPNBrasíliaBrazil
  10. 10.Department of Biological SciencesUniversidade de São Paulo, Luiz de Queiroz College of AgriculturePiracicabaBrazil
  11. 11.Department of EcologyUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  12. 12.Rede de sementes do cerradoBrasíliaBrazil
  13. 13.Institute of Biological and Health SciencesUniversidade Federal de AlagoasMaceióBrazil
  14. 14.Amazon Environmental Research Institute—IPAMBrasíliaBrazil
  15. 15.FGVcesSão PauloBrazil
  16. 16.World Resources Institute—WRISão PauloBrazil
  17. 17.Secretary of EnvironmentSão PauloBrazil
  18. 18.Brazilian Forest ServiceMinistry of EnvironmentBrasíliaBrazil
  19. 19.Reference Center for the Recovery of Degraded Areas of the CaatingaUniversidade Federal do Vale do São FranciscoPetrolinaBrazil
  20. 20.Secretariat of the EnvironmentBrasíliaBrazil
  21. 21.Department of Applied EcologyUniversidade Federal de PernambucoRecifeBrazil
  22. 22.Universidade Federal Rural da Amazônia/CAPESBelémBrazil
  23. 23.EMBRAPA Amazônia OrientalBelémBrazil
  24. 24.Institute for Advanced StudiesUniversidade de São PauloSão PauloBrazil

Personalised recommendations