Skip to main content

Advertisement

Log in

Adaptive management and planning for the conservation of four threatened large Asian mammals in a changing climate

  • Original Article
  • Published:
Mitigation and Adaptation Strategies for Global Change Aims and scope Submit manuscript

Abstract

Mammals can serve as an indicator of global climate change impacts on species’ distributions due to the wide range of ecological niches they utilize. Tropical Asia encompasses several biodiversity hotspots, is the largest reservoir of mammalian diversity on earth, and has already experienced the extinction of several mammal species either regionally or locally. Global climate change could become a significant driver of species extinction, either directly or synergistically with other factors, such as habitat loss, agricultural expansion, overexploitation, and land use change. Despite the variability of climatic regimes across tropical Asia, the potential impacts of climate change on continental-scale distributions of mammals have not been examined. To address this issue, we developed habitat suitability models for four threatened large mammals (Ursus thibetanus, Elephas maximus, Hoolock hoolock, and Panthera tigris tigris), across their entire distributions in Asia. We used presence-only distribution records and nine bioclimatic and environmental variables and built species-specific habitat suitability models using a maximum entropy algorithm (MaxEnt). We used a moderate and an extreme climate scenario (RCP6.0 and RCP8.5) and three time steps: current, 2050, and 2070. Our results suggest that changes in annual precipitation, annual mean temperature, precipitation, and temperature seasonality could reduce suitable habitat for these mammals and therefore increase their extinction risks. However, several patches of stable habitat are projected to persist through the late twenty-first century, and these climate change refugia areas can be managed as an important strategy for conservation of the mammal species and the maintenance of biodiversity in the face of ongoing climate change. In this context, we recommend the following steps for the conservation of global mammal populations: (i) define the spatial extent (local, regional, or continental scale) of the target mammals, (ii) identify and prioritize climate change refugial areas following ecological niche models or other methods based on biological data, and (iii) implement management actions by analyzing current management tools and the strategies required (e.g., habitat restoration or assisted migration for prioritized species) to achieve long-term conservation goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alamgir M, Mukul SA, Turton SM (2015) Modelling spatial distribution of critically endangered Asian elephant and Hoolock gibbon in Bangladesh forest ecosystems under a changing climate. Appl Geogr 60:10–19

    Article  Google Scholar 

  • Arino O, Ramos Perez J, Kalogirou V, Bontemps S, Defourny P, Van Bogaert E (2012) Global land cover map for 2009 (GlobCover 2009). European Space Agency & Université Catholique de Louvain

  • Asner GP, Loarie SR, Heyder U (2010) Combined effects of climate and land-use change on the future of humid tropical forests. Conserv Lett 3:395–403

    Article  Google Scholar 

  • Baskaran N (1998) Ranging and resource utilization by Asian elephant (Elephas maximus Linnaeus) in Nilgiri biosphere reserve, South India. Ph. D. thesis, Bharathidasan University, Tamil Nadu

  • Broennimann O, Thuiller W, Hughes G, Midgley GF, Alkemade JR, Guisan A (2006) Do geographic distribution, niche property and life form explain plants' vulnerability to global change? Glob Chang Biol 12:1079–1093

    Article  Google Scholar 

  • Brook BW, Sodhi NS, Bradshaw CJ (2008) Synergies among extinction drivers under global change. Trends Ecol Evol 23:453–460

    Article  Google Scholar 

  • Broxton PD, Zeng X, Scheftic W, Troch PA (2014) A MODIS-based global 1-km maximum green vegetation fraction dataset. J Appl Meteorol Climatol 53:1996–2004

    Article  Google Scholar 

  • Butler RA, Laurance WF (2008) New strategies for conserving tropical forests. Trends Ecol Evol 23:469–472

    Article  Google Scholar 

  • Butt N, Seabrook L, Maron M, Law BS, Dawson TP, Syktus J, McAlpine CA (2015) Cascading effects of climate extremes on vertebrate fauna through changes to low-latitude tree flowering and fruiting phenology. Glob Chang Biol 21:3267–3277

    Article  Google Scholar 

  • Butt N, Whiting S, Dethmers K (2016) Identifying future sea turtle conservation areas under climate change. Biol Conserv 204:189–196

    Article  Google Scholar 

  • Cardillo M, Mace GM, Jones KE, Bielby J, Bininda-Emonds OR, Sechrest W, Orme CDL, Purvis A (2005) Multiple causes of high extinction risk in large mammal species. Science 309:1239–1241

    Article  Google Scholar 

  • Carter NH, Gurung B, Vina A, Campa H III, Karki JB, Liu J (2013) Assessing spatiotemporal changes in tiger habitat across different land management regimes. Ecosphere 4:1–19

    Google Scholar 

  • Catullo G, Masi M, Falcucci A, Maiorano L, Rondinini C, Boitani L (2008) A gap analysis of southeast Asian mammals based on habitat suitability models. Biol Conserv 141:2730–2744

    Article  Google Scholar 

  • Ceballos G, Ehrlich PR (2002) Mammal population losses and the extinction crisis. Science 296:904–907

    Article  Google Scholar 

  • Chape S, Blyth S, Fish L, Fox P, Spalding M (2003) 2003 United Nations list of protected areas. IUCN, Cambridge (RU). UNEP, Geneva (Suiza)

  • Choudhury A, Lahiri Choudhury DK, Desai A, Duckworth JW, Easa PS, Johnsingh AJT, Fernando P, Hedges S, Gunawardena M, Kurt F, Karanth U, Lister A, Menon V, Riddle H, Rübel A, Wikramanayake E (IUCN SSC Asian Elephant Specialist Group) (2008) Elephas maximus. The IUCN Red List of Threatened Species 2008:e.T7140A12828813. https://doi.org/10.2305/IUCN.UK.2008.RLTS.T7140A12828813.en. Downloaded on 28 September 2016

  • Corlett RT (1998) Frugivory and seed dispersal by vertebrates in the oriental (Indomalayan) region. Biol Rev Camb Philos Soc 73:413–448

    Article  Google Scholar 

  • Corlett RT, Lafrankie JV Jr (1998) Potential impacts of climate change on tropical asian foreststhrough an influence on phenology. Climatic Change 39:439–453

  • Dai Y, Zeng X, Dickinson RE, Baker I, Bonan GB, Bosilovich MG, Denning AS, Dirmeyer PA, Houser PR, Niu G (2003) The common land model. Bull Am Meteorol Soc 84:1013–1023

    Article  Google Scholar 

  • Davidson AD, Hamilton MJ, Boyer AG, Brown JH, Ceballos G (2009) Multiple ecological pathways to extinction in mammals. Proc Natl Acad Sci 106:10702–10705

    Article  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46

    Article  Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Fisher DO, Owens IP (2004) The comparative method in conservation biology. Trends Ecol Evol 19:391–398

    Article  Google Scholar 

  • Franklin J (2010) Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Franklin J, Serra-Diaz JM, Syphard AD, Regan HM (2016) Global change and terrestrial plant community dynamics. Proc Natl Acad Sci 113:3725–3734

  • Galetti M, Giacomini HC, Bueno RS, Bernardo CS, Marques RM, Bovendorp RS, Steffler CE, Rubim P, Gobbo SK, Donatti CI (2009) Priority areas for the conservation of Atlantic forest large mammals. Biol Conserv 142:1229–1241

    Article  Google Scholar 

  • Garshelis DL, Steinmetz R (IUCN SSC Bear Specialist Group) (2008) Ursus thibetanus. The IUCN red list of threatened species 2008: e.T22824A9391633. https://doi.org/10.2305/IUCN.UK.2008.RLTS.T22824A9391633.en. Downloaded on 28 September 2016

  • Gavin DG, Fitzpatrick MC, Gugger PF, Heath KD, Rodríguez-Sánchez F, Dobrowski SZ, Hampe A, Hu FS, Ashcroft MB, Bartlein PJ, Blois JL, Carstens BC, Davis EB, de Lafontaine G, Edwards ME, Fernandez M, Henne PD, Herring EM, Holden ZA, W-s K, Liu J, Magri D, Matzke NJ, McGlone MS, Saltré F, Stigall AL, Tsai Y-HE, Williams JW (2014) Climate refugia: joint inference from fossil records, species distribution models and phylogeography. New Phytol 204:37–54

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Gunarathne R, Perera G (2014) Climatic factors responsible for triggering phenological events in Manilkara hexandra (Roxb.) Dubard., a canopy tree in tropical semi-deciduous forest of Sri Lanka. Trop Ecol 55:63–73

    Google Scholar 

  • Hällfors M, Aikio S, Fronzek S, Hellmann J, Ryttäri T, Heikkinen R (2016) Assessing the need and potential of assisted migration using species distribution models. Biol Conserv 196:60–68

    Article  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova S, Tyukavina A, Thau D, Stehman S, Goetz S, Loveland T (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hoffmann M, Hilton-Taylor C, Angulo A, Böhm M, Brooks TM, Butchart SH, Carpenter KE, Chanson J, Collen B, Cox NA (2010) The impact of conservation on the status of the world’s vertebrates. Science 330:1503–1509

    Article  Google Scholar 

  • Horev A, Yosef R, Tryjanowski P, Ovadia O (2012) Consequences of variation in male harem size to population persistence: modeling poaching and extinction risk of Bengal tigers (Panthera tigris). Biol Conserv 147:22–31

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Islam A, Muzaffar SB, Aziz MA, Kabir MM, Uddin M, ChaNma S, Chowdhury SU, Rashid MA, Chowdhury GW, Mohsanin S (2010) Baseline survey of bears in Bangladesh 2008–2010. Wildlife Trust of Bangladesh

  • IUCN (2000) 2000 IUCN Red List of Threatened Species. IUCN, Gland, Switzerland and Cambridge, UK

  • IUCN (2014) The IUCN Red List of Threatened Species. Version 2014.1. http://www.iucnredlist.org. Downloaded on 28 September 2015

  • IUCN (2016) The IUCN Red List of Threatened Species. Version 2016.2. http://www.iucnredlist.org. Downloaded on 21 July 2016

  • Izumiyama S, Shiraishi T (2004) Seasonal changes in elevation and habitat use of the Asiatic black bear (Ursus thibetanus) in the northern Japan alps. Mammal Study 29:1–8

    Article  Google Scholar 

  • Khan MMH (2008) Protected areas of Bangladesh: a guide to wildlife: Nishorgo program, wildlife management and nature conservation Circle, Bangladesh Forest Department

  • Levinsky I, Skov F, Svenning J-C, Rahbek C (2007) Potential impacts of climate change on the distributions and diversity patterns of European mammals. Biodivers Conserv 16:3803–3816

    Article  Google Scholar 

  • Li J, McCarthy TM, Wang H, Weckworth BV, Schaller GB, Mishra C, Lu Z, Beissinger SR (2016) Climate refugia of snow leopards in high Asia. Biol Conserv 203:188–196

    Article  Google Scholar 

  • Loucks C, Barber-Meyer S, Hossain MAA, Barlow A, Chowdhury RM (2010) Sea level rise and tigers: predicted impacts to Bangladesh’s Sundarbans mangroves. Clim Chang 98:291–298

    Article  Google Scholar 

  • Magris RA, Pressey RL, Weeks R, Ban NC (2014) Integrating connectivity and climate change into marine conservation planning. Biol Conserv 170:207–221

    Article  Google Scholar 

  • Michalski F, Peres CA (2007) Disturbance-mediated mammal persistence and abundance-area relationships in Amazonian forest fragments. Conserv Biol 21:1626–1640

    Google Scholar 

  • Morelli TL, Daly C, Dobrowski SZ, Dulen DM, Ebersole JL, Jackson ST, Lundquist JD, Millar CI, Maher SP, Monahan WB (2016) Managing climate change refugia for climate adaptation. PLoS One 11:e0159909

    Article  Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  Google Scholar 

  • Olson DM, Dinerstein E (1998) The global 200: a representation approach to conserving the Earth’s most biologically valuable ecoregions. Conserv Biol 12:502–515

    Article  Google Scholar 

  • Pacifici M, Foden WB, Visconti P, Watson JE, Butchart SH, Kovacs KM, Scheffers BR, Hole DG, Martin TG, Akçakaya HR (2015) Assessing species vulnerability to climate change. Nat Clim Chang 5:215–224

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Peres CA, Palacios E (2007) Basin-wide effects of game harvest on vertebrate population densities in Amazonian forests: implications for animal-mediated seed dispersal. Biotropica 39:304–315

    Article  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. Proceedings of the twenty-first international conference on machine learning. ACM Press, New York, pp 655–662

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197

    Article  Google Scholar 

  • Pokharel KP, Ludwig T, Storch I (2016) Predicting potential distribution of poorly known species with small database: the case of four-horned antelope Tetracerus quadricornis on the Indian subcontinent. Ecol Evol 6:2297–2307

  • Puyravaud JP, Davidar P, Srivastava RK, Wright B (2017) Modelling harvest of Asian elephants Elephas maximus on the basis of faulty assumptions promotes inappropriate management solutions. Oryx 51:506–512

  • Rondinini C, Di Marco M, Chiozza F, Santulli G, Baisero D, Visconti P, Hoffmann M, Schipper J, Stuart SN, Tognelli MF (2011) Global habitat suitability models of terrestrial mammals. Philos Trans R Soc Lond B Biol Sci 366:2633–2641

    Article  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  Google Scholar 

  • Sanderson EW, Forrest J, Loucks C, Ginsberg J, Dinerstein E, Seidensticker J, Leimgruber P, Songer M, Heydlauff A, O’Brien T (2010) Setting priorities for tiger conservation: 2005–2015. Tigers of the world: the science, politics, and conservation of Panthera tigris. William Andrew Publishing, Boston, pp 143–161

    Google Scholar 

  • Sathyakumar S (2006) The status of Asiatic black bears in India. Understanding Asian bears to secure their future. Japan Bear Network, Ibaraki, Japan, pp 12–19

    Google Scholar 

  • Secretariat of the CBD (2010) Conference of the parties 10 decision X/2. Strategic Plan for Biodiversity 2011-2020, 1–13

  • Shoshani J, Eisenberg JF (1982) Elephas maximus. Mamm Species Arch 182:1–8

    Google Scholar 

  • Sodhi NS, Koh LP, Brook BW, Ng PK (2004) Southeast Asian biodiversity: an impending disaster. Trends Ecol Evol 19:654–660

    Article  Google Scholar 

  • Sohl TL (2014) The relative impacts of climate and land-use change on conterminous United States bird species from 2001 to 2075. PLoS One 9:e112251

    Article  Google Scholar 

  • Srinivasulu C, Srinivasulu B (2012) South Asian Mammals. South Asian mammals. Springer, p 9–98

  • Stanton JC, Pearson RG, Horning N, Ersts P, Reşit Akçakaya H (2012) Combining static and dynamic variables in species distribution models under climate change. Methods Ecol Evol 3:349–357

    Article  Google Scholar 

  • Sukumar R (1992) The Asian elephant: ecology and management. Cambridge University Press, Cambridge

    Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BF, De Siqueira MF, Grainger A, Hannah L (2004) Extinction risk from climate change. Nature 427:145–148

    Article  Google Scholar 

  • Ting S, Hartley S, Burns K (2008) Global patterns in fruiting seasons. Glob Ecol Biogeogr 17:648–657

    Article  Google Scholar 

  • Trisurat Y, Bhumpakphan N, Reed DH, Kanchanasaka B (2012) Using species distribution modeling to set management priorities for mammals in northern Thailand. J Nat Conserv 20:264–273

    Article  Google Scholar 

  • Visconti P, Bakkenes M, Baisero D, Brooks T, Butchart SH, Joppa L, Alkemade R, Di Marco M, Santini L, Hoffmann M, Maiorano L, Pressey RL, Arponen A, Boitani L, Reside AE, Van Vuuren DP, Rondinini C (2016) Projecting global biodiversity indicators under future development scenarios. Conserv Lett 9:5–13

    Article  Google Scholar 

  • Walston J, Robinson JG, Bennett EL, Breitenmoser U, da Fonseca GA, Goodrich J, Gumal M, Hunter L, Johnson A, Karanth KU (2010) Bringing the tiger back from the brink—the six percent solution. PLoS Biol 8:e1000485

    Article  Google Scholar 

  • Wiegand T, Revilla E, Moloney KA (2005) Effects of habitat loss and fragmentation on population dynamics. Conserv Biol 19:108–121

    Article  Google Scholar 

  • Wilson JW, Sexton JO, Jobe RT, Haddad NM (2013) The relative contribution of terrain, land cover, and vegetation structure indices to species distribution models. Biol Conserv 164:170–176

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by International Postgraduate Research Scholarship (IPRS) and The University of Queensland (UQ) Centennial Scholarship to the first author. We would like to acknowledge the Research Grant from School of Earth and Environmental Sciences, The University of Queensland for funding this research. We also thank the anonymous reviewers for their excellent comments on the earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiban Chandra Deb.

Electronic supplementary material

ESM 1

(DOCX 17431 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deb, J.C., Phinn, S., Butt, N. et al. Adaptive management and planning for the conservation of four threatened large Asian mammals in a changing climate. Mitig Adapt Strateg Glob Change 24, 259–280 (2019). https://doi.org/10.1007/s11027-018-9810-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11027-018-9810-3

Keywords

Navigation