Improvement of economic traits and reduction of greenhouse gas emissions in sheep and goats in Central Asia

  • Flavio Forabosco
  • Riccardo Negrini
Original Article


In central Asian countries, sheep (Ovis aries) and goats (Capra hircus) represent a key economic resource for millions of people living in rural communities and, at the same time, a critical source of greenhouse gas (GHG) emissions. This study aims to estimate GHG emissions of several economic traits of sheep and goats and investigate sustainable mitigation strategies. It advances beyond previous studies by calculating the GHG emissions of traits of economic importance rather than reporting average animal emission and can thus provide insights for creating better-targeted mitigation strategies. In dairy sheep in Tajikistan, the emission intensity (EI) decreased from 62.4 to 56.7 kg CO2-eq kg−1 of protein as the production of milk increased by 20%. In meat goats raised in Turkmenistan, the EI decreased by 2.6 kg CO2-eq kg−1 of protein when simulating an increase in meat production of + 20%. Improving female fertility by 10% scaled down the EI of meat sheep in Uzbekistan by 36 kg CO2-eq kg−1 of protein. The improvement of meat and milk productions, female fertility, and litter size and the reduction of mortality, and female culling can reduce the emission intensity of sheep and goats globally. Thus, genetic improvement of economic traits is an important global mitigation tool. Furthermore, improvement of national and international sheep and goat strategies can provide policymakers with valuable information to develop regional and global mitigation actions.


Breeding Environment Goat Greenhouse gas Mitigation Sheep 


  1. Aaheim A, Wei T, Romstad B (2016) Conflicts of economic interests by limiting global warming to +3°C. Mitig Adapt Strateg Glob Chang 1–18.
  2. Abdybekova A, Sultanov A, Karatayev B, Zhumabayeva A, Shapiyeva Z, Yeshmuratov T, Toksanbayev D, Shalkeev R, Torgerson PR (2015) Epidemiology of echinococcosis in Kazakhstan: an update. J Helminthol 89:647–650. CrossRefGoogle Scholar
  3. Arrébola F, Sánchez M, López MD, Rodríguez M, Pardo B, Palacios C, Abecia JA (2016) Effects of weather and management factors on fertility after artificial insemination in Florida goats: a ten-year study. Small Rumin Res 137:47–52CrossRefGoogle Scholar
  4. Bouquet A, Venot E, Laloë D, Forabosco F, Fogh A, Pabiou T, Moore K, Eriksson JÅ, Renand G, Phocas F (2011) Genetic structure of the European Charolais and Limousin cattle metapopulations using pedigree analyses. J Anim Sci 89:1719–1730CrossRefGoogle Scholar
  5. Compton CWR, Heuer C, Thomsen PT, Carpenter TE, Phyn CVC, McDougall S (2017) Invited review: a systematic literature review and meta-analysis of mortality and culling in dairy cattle. J Dairy Sci 100:1–16. CrossRefGoogle Scholar
  6. FAO (2014) Europe and Central Asia food and agriculture. FAO Stat Yearb 1:130Google Scholar
  7. FAOSTAT (2017) FAOSTAT. In: Food agric. organ. United Nations. Accessed 11 Nov 2017
  8. Finkbeiner M, Inaba A, Tan R, Christiansen K, Klüppel HJ (2006) The new international standards for life cycle assessment: ISO 14040 and ISO 14044. Int J Life Cycle Assess 11:80–85. CrossRefGoogle Scholar
  9. Flachowsky G, Gruen M, Meyer U (2013) Feed-efficient ruminant production: opportunities and challenges. J Anim Feed Sci 22:177–187CrossRefGoogle Scholar
  10. Flysjö A, Cederberg C, Strid I (2008) LCA-databas för konventionella fodermedel - miljöpåverkan i samband med produktion. SIK-Institutet för Livsmed och Biotek 772:125Google Scholar
  11. Forabosco F, Chitchyan Z, Mantovani R (2017) Methane, nitrous oxide emissions and mitigation strategies for livestock in developing countries: a review. S Afr J Anim Sci 47:268–280.
  12. Gerber PJ, Steinfeld H, Henderson B et al (2013) Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Food Agric Organ United Nations 1:1–139Google Scholar
  13. Hayes BJ, Lewin HA, Goddard ME (2013) The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends Genet 29:206–214. CrossRefGoogle Scholar
  14. Henderson B, Falcucci A, Mottet A, Early L, Werner B, Steinfeld H, Gerber P (2017) Marginal costs of abating greenhouse gases in the global ruminant livestock sector. Mitig Adapt Strateg Glob Chang 22:199–224CrossRefGoogle Scholar
  15. Henderson B, Golub A, Pambudi D, et al (2018) The power and pain of market-based carbon policies: a global application to greenhouse gases from ruminant livestock production. Mitig Adapt Strateg Glob Chang 23:349–369Google Scholar
  16. Herrero M, Havlík P, Valin H et al (2013) Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc Natl Acad Sci 110:20888–20893CrossRefGoogle Scholar
  17. Herrero M, Henderson B, Havlík P, Thornton PK, Conant RT, Smith P, Wirsenius S, Hristov AN, Gerber P, Gill M, Butterbach-Bahl K, Valin H, Garnett T, Stehfest E (2016) Greenhouse gas mitigation potentials in the livestock sector. Nat Clim Chang 6:452–461. CrossRefGoogle Scholar
  18. Hristov AN, Oh J, Lee C et al (2013) Mitigation of greenhouse gas emissions in livestock production—a review of technical options for non-C02 emissions. FAO Anim Prod Health 177:226Google Scholar
  19. Iliasov S, Yakimov V (2009) The Kyrgyz Republic’s second national communication to the United Nations Framework ConventionGoogle Scholar
  20. IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories—volume 4: agriculture, forestry and other land use. Intergov Panel Clim Chang 4:678Google Scholar
  21. IPCC (2007) Climate change 2007. Nature 446:727–728. CrossRefGoogle Scholar
  22. IPCC (2014) Climate change 2014—impacts, adaptation and vulnerability: regional aspects. Intergovernmental panel on climate change. Cambridge University PressGoogle Scholar
  23. Klöpffer W (2012) The critical review of life cycle assessment studies according to ISO 14040 and 14044. Int J Life Cycle Assess 17:1087–1093. CrossRefGoogle Scholar
  24. Knapp JR, Laur GL, Vadas PA, Weiss WP, Tricarico JM (2014) Invited review: enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions. J Dairy Sci 97:3231–3261. CrossRefGoogle Scholar
  25. Kolseth AK, D’Hertefeldt T, Emmerich M, Forabosco F, Marklund S, Cheeke TE, Hallin S, Weih M (2015) Influence of genetically modified organisms on agro-ecosystem processes. Agric Ecosyst Environ 214:96–106CrossRefGoogle Scholar
  26. Kuipers A, Rozstalnyy A, Keane G (2013) Cattle Husbandry in Eastern Europe and China: structure, development paths and optimization. Wageningen Academic Publishers, WageningenGoogle Scholar
  27. Lopez-Sebastián A, Coloma MA, Toledano A, Santiago-Moreno J (2014) Hormone-free protocols for the control of reproduction and artificial insemination in goats. Reprod Domest Anim 49:22–29CrossRefGoogle Scholar
  28. Macías F, Camps Arbestain M (2010) Soil carbon sequestration in a changing global environment. Mitig Adapt Strateg Glob Chang 15:511–529. CrossRefGoogle Scholar
  29. Marino R, Atzori ASS, D’Andrea M et al (2016) Climate change: production performance, health issues, greenhouse gas emissions and mitigation strategies in sheep and goat farming. Small Rumin Res 135:50–59. CrossRefGoogle Scholar
  30. Mottet A, Opio C, Falcucci A, Tempio G et al (2017) Global livestock environmental assessment mondel. Ver. 2.0, Manual. Food and agriculture organization of the United Nations, RomeGoogle Scholar
  31. Opio C, Gerber P, Mottet A et al (2013) Greenhouse gas emission from ruminant supply chains: a global life cycle assessment. Food and agriculture organization of the United Nations, RomeGoogle Scholar
  32. Pachauri RK, Allen MR, Barros VR, et al (2014) Climate change 2014: synthesis report. Contribution of WOrking Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCCGoogle Scholar
  33. Robinson S, Wiedemann C, Michel S, Zhumabayev Y, Singh N (2012) Pastoral tenure in Central Asia: theme and variation in the five former soviet republics. In: Squires V (ed) Rangeland stewardship in Central Asia: balancing improved livelihoods, biodiversity conservation and land protection. Springer, Dordrecht, pp 239–274CrossRefGoogle Scholar
  34. Rupp R, Mucha S, Larroque H, McEwan J, Conington J (2016) Genomic application in sheep and goat breeding. Anim Front 6:39–44. CrossRefGoogle Scholar
  35. Steinfeld H, Gerber P, Wassenaar TD, et al (2006) Livestock’s long shadow: environmental issues and options. Food Agric. Organiz. United Nations, RomeGoogle Scholar
  36. UNFCCC (2017) National inventory submissions 2017. In: United Nations Framew. Conv. Clim. Chang. Accessed 11 Nov 2017
  37. Westhoek H, Rood T, van den Berg M, et al (2011) The protein puzzle: The consumption and production of meat, dairy and fish in the European Union. Netherlands Environmental Assessment Agency 1:1–220Google Scholar
  38. Wint W, Robinson R (2007) Gridded livestock of the world. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  39. You L, Wood-Sichra U, Fritz S, et al (2014) Spatial production allocation model (SPAM) 2005 beta version. International Food Policy Research Institute, Washington, DC, USA and the International Institute for Applied Systems Analysis, Laxenburg, AustriaGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Agrarian University of MoldovaChișinăuMoldova
  2. 2.Università Cattolica del Sacro CuorePiacenzaItaly

Personalised recommendations