Impact of climate change and anthropogenic pressure on the groundwater resources in arid environment

  • Emna GuermaziEmail author
  • Marianne Milano
  • Emmanuel Reynard
  • Moncef Zairi
Original Article


Climate and anthropogenic changes are expected to reduce renewable groundwater resources and to increase the risks of water scarcity, particularly in arid regions. Understanding current and future risks of water scarcity is vital to make the right water management decision at the right time. This study aims to analyze the impact of both human and climate pressures on groundwater availability in an arid environment: the Regueb basin in Central Tunisia. An integrated approach was used and applied at a monthly time step over a reference period (1976–2005) and a future period (2036–2065). Groundwater resources were assessed using hydrogeological modeling. Irrigation water withdrawals were evaluated based on remote sensing and the CropWat model. Urban water use was estimated from population growth and specific monthly water consumption data. The resulting values were used to compute two indicators (water stress index, groundwater balance) to evaluate water scarcity risks at the 2050 horizon. To assess current and future climate forcing on water resources, three climate scenarios were generated based on simulations from Coupled Model Intercomparison Project Phase 5 (CMIP5) data. A business-as-usual and an adaptation scenario (optimal cropping scenario) were performed by varying the surface areas and the crops grown in the irrigated area. Results show that the average annual water use will increase by 3.8 to 16.4% under climate change only, whereas it will increase by 100% under the business-as-usual scenario. Under the optimal cropping scenario, total water demand will increase by 50%. Water stress index indicates that under the climate change only scenario, water demand should be satisfied by the 2050 horizon, while under the other two scenarios, severe water stress will occur by 2050. The developed framework in this paper aims to fit in arid and semiarid regions in order to evaluate groundwater stress and to assess the efficiency of adaptation strategies. It results in two major recommendations regarding changes in land use and the improvement of groundwater monitoring.


Water stress Climate change Anthropogenic pressure Groundwater 



The authors are grateful to the Institute of Geography and Sustainability (IGD) of the University of Lausanne for providing research infrastructure and the Swiss Government for the postdoctoral scholarship awarded to Emna Guermazi. For the provision of piezometric and land use data, the Tunisian Government is gratefully acknowledged. Daphne Goodfellow is acknowledged for English proofreading.


  1. Alcamo J, Döll P, Kaspar F, Siebert S (1997) Global change and global scenarios of water use and availability: an application of WaterGAP 1.0. University of Kassel, Germany, pp 1–47Google Scholar
  2. Alcamo J, Flörke M, Märker M (2007) Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrol Sci J 52:247–275. CrossRefGoogle Scholar
  3. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  4. Alley WM, Clark BR, Ely DM, Faunt CC (2017) Groundwater development stress: global-scale indices compared to regional modeling. Groundwater 1–10. doi:
  5. Arnell NW, Reynard NS (1996) The effects of climate change due to global warming on river flows in Great Britain. J Hydrol 183:397–424. CrossRefGoogle Scholar
  6. Arnell NW, van Vuuren DP, Isaac M (2011) The implications of climate policy for the impacts of climate change on global water resources. Glob Environ Chang 21:592–603. CrossRefGoogle Scholar
  7. Aw-Hassan A, Rida F, Telleria R, Bruggeman A (2014) The impact of food and agricultural policies on groundwater use in Syria. J Hydrol 513:204–215. CrossRefGoogle Scholar
  8. Bear J (1972) Dynamics of fluids in porous media. American Elsevier Publishing Company, New YorkGoogle Scholar
  9. Calianno M, Reynard E, Milano M, Buchs A (2017) Quantifier les usages de l’eau : une clarification terminologique et conceptuelle pour lever les confusions. VertigO 17:1–26. CrossRefGoogle Scholar
  10. Castany G (1998) Hydrogéologie. Principes et méthodes. Dunod, Paris, p 236Google Scholar
  11. Castany G (1982) Principes et méthodes de l’hydrogéologie. Université de Pierre et Marie Crue (Paris VI) 233pGoogle Scholar
  12. CGWB (1997) Groundwater resources of India. Central Ground Water Board, IndiaGoogle Scholar
  13. Döll P (2009) Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environ Res Lett 4:035006. CrossRefGoogle Scholar
  14. Driscoll FG (1986) Groundwater and wells, 2nd edn. Johnson Division, St Paul 1 089 ppGoogle Scholar
  15. Eldardiry H, Habib E, Borrok DM (2016) Small-scale catchment analysis of water stress in wet regions of the U.S.: an example from Louisiana. Environ Res Lett 11:124031. CrossRefGoogle Scholar
  16. Fabre J, Ruelland D, Dezetter A, Grouillet B (2015) Accounting for hydro-climatic and water use variability in the assessment of past and future water balance at the basin scale. IAHS-AISH Proc Rep 371:43–48. CrossRefGoogle Scholar
  17. Falkenmark M (1989) The massive water scarcity now threatening Africa: why isn’t it being addressed? Ambio:112–118Google Scholar
  18. FAO—Food and Agriculture Organization of the United Nations (2016) AQUASTAT. http://www.fao. org/nr/water/aquastat/water_use/index.stm
  19. FAO—Food and Agriculture Organization of the United Nations (2014) AQUASTAT.
  20. Freeze RA, Witherspoon PA (1966) Theoretical analysis of regional groundwater flow 1. Analytical and numerical solutions to the mathematical model. Water Resour Res 2:641–656CrossRefGoogle Scholar
  21. Frenken K, Gillet V (2012) Irrigation water requirement and water withdrawal by country. Food and Agriculture Organization of the United Nations 264Google Scholar
  22. Frija A, Dhehibi B, Chebil A, Villholth KG (2015) Performance evaluation of groundwater management instruments: the case of irrigation sector in Tunisia. Groundwater Sustain Dev 1:23–32. CrossRefGoogle Scholar
  23. GEC—Ground Water Estimation Committee (1984) Ground water estimation methodology. Ministry of Irrigation, Government of India, New DelhiGoogle Scholar
  24. Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Hollweg HD, Ilyina T, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Mueller W, Notz D, Pithan F, Raddatz T, Rast S, Redler R, Roeckner E, Schmidt H, Schnur R, Segschneider J, Six KD, Stockhause M, Timmreck C, Wegner J, Widmann H, Wieners KH, Claussen M, Marotzke J, Stevens B (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J Adv Model Earth Syst 5:572–597. CrossRefGoogle Scholar
  25. Grouillet B, Fabre J, Ruelland D, Dezetter A (2015) Historical reconstruction and 2050 projections of water demand under anthropogenic and climate changes in two contrasted Mediterranean catchments. J Hydrol 522:684–696. CrossRefGoogle Scholar
  26. Guermazi E (2016) Contribution de la télédétection et de la simulation numérique pour la gestion intégrée des ressources en eaux en milieu aride. Application au bassin de Regueb «Tunisie centrale». PhD Thesis, National engineering school of sfax, TunisiaGoogle Scholar
  27. Guermazi E, Bouaziz M, Zairi M (2016) Water irrigation management using remote sensing techniques: a case study in Central Tunisia. Environ Earth Sci 75:202. CrossRefGoogle Scholar
  28. Hadded R, Nouiri I, Alshihabi O, Maßmann J, Huber M, Laghouane A, Yahiaoui H, Tarhouni J (2013) A decision support system to manage the groundwater of the Zeuss Koutine aquifer using the WEAP-MODFLOW framework. Water Resour Manag 27:1981–2000. CrossRefGoogle Scholar
  29. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int J Climatol 34:623–642. CrossRefGoogle Scholar
  30. Hatch U, Jagtap S, Jones J, Lamb M (1999) Potential effects of climate change on agricultural water use in the southeast U.S. J Am Water Resour Assoc 35:1551–1561CrossRefGoogle Scholar
  31. Hay LE, Wilby RL, Leavesley GH (2000) A Comparison of Delta Change and Downscaled GCM scenarios for three mountainous basins in the United States. J Am Water Resour Assoc 36:387–397Google Scholar
  32. Howden SM, Soussana JF, Tubiello FN, et al (2007) Adapting agriculture to climate change. Proc Natl Acad Sci 104:19691–19696.
  33. Hu Y, Moiwo JP, Yang Y, Han S, Yang Y (2010) Agricultural water-saving and sustainable groundwater management in Shijiazhuang Irrigation District, North China Plain. J Hydrol 393:219–232. CrossRefGoogle Scholar
  34. HWSD—Harmonized World Soil Database. (2012). HWSD documentation.
  35. Iglesias A, Garrote L (2015) Adaptation strategies for agricultural water management under climate change in Europe. Agric Water Manag 155:113–124.
  36. Koutsoyiannis D, Kundzewicz ZW (2007) Editorial—quantifying the impact of hydrological studies. Hydrol Sci J 52(1):3–17CrossRefGoogle Scholar
  37. Kumar CP (2013) Numerical modelling of ground water flow using MODFLOW. Indian J Sci 2:86–92Google Scholar
  38. Kumar N, Tischbein B, Kusche J, Laux P, Beg MK, Bogardi JJ (2017) Impact of climate change on water resources of upper Kharun catchment in Chhattisgarh, India. J Hydrol Reg Stud 13:189–207. CrossRefGoogle Scholar
  39. Liu J, Zhang C, Kou L, Zhou Q (2017) Effects of climate and land use changes on water resources in the Taoer River. Adv Meteorol 2017:1–13. CrossRefGoogle Scholar
  40. Malek Ž, Verburg PH (2017) Adaptation of land management in the Mediterranean under scenarios of irrigation water use and availability. Mitig Adapt Strateg Glob Chang:1–17.
  41. Masterson JP, Pope JP, Fienen MN, et al. (2016) Assessment of groundwater availability in the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to North Carolina. USGS Professional Paper 1829Google Scholar
  42. McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference ground-water flow model: techniques of water-resources investigations of the United States Geological Survey, Book 6, Chapter A1, p 586Google Scholar
  43. Milano M, Reynard E, Köplin N, Weingartner R (2015) Climatic and anthropogenic changes in Western Switzerland: impacts on water stress. Sci Total Environ 536:12–24. CrossRefGoogle Scholar
  44. Milano M, Ruelland D, Fernandez S, Dezetter A, Fabre J, Servat E, Fritsch JM, Ardoin-Bardin S, Thivet G (2013) Current state of Mediterranean water resources and future trends under climatic and anthropogenic changes. Hydrol Sci J 58:498–518. CrossRefGoogle Scholar
  45. Nian Y, Li X, Zhou J, Hu X (2014) Impact of land use change on water resource allocation in the middle reaches of the Heihe River Basin in northwestern China. J Arid Land 6:273–286. CrossRefGoogle Scholar
  46. NIS—National Institute of Statistics (2014) Census 2014.
  47. Oudin L (2004) Recherche d’un modèle d’évapotranspiration potentielle pertinent comme entrée d’un modèle pluie-débit global. Sciences of the Universe [physics]. ENGREF (AgroParisTech)Google Scholar
  48. Oudin L, Michel C, Anctil F (2005) Which potential evapotranspiration input for a lumped rainfall-runoff model? Part 1—can rainfall-runoff models effectively handle detailed potential evapotranspiration inputs? J Hydrol 303:275–289. CrossRefGoogle Scholar
  49. Prudhomme C, Reynard N, Crooks S (2002) Downscaling of global climate models for flood frequency analysis: where are we now?. Hydrol Process 16:1137–1150.
  50. Quentin A (2015). Etude de la variabilité interannuelle de l’évaporation potentielle. IRSTEA: Institut national de recherche en sciences et technologies pour l’environnement et l’agriculture EDF/DTG: Électricité de France/Division Technique Générale - Grenoble S. Master ThesisGoogle Scholar
  51. Raskin P, Gleick P, Kirshen P, et al. (1997) Water futures: assessment of long-range patterns and problems. Comprehensive assessment of the freshwater resources of the world. Stockholm Environment Institute, StockholmGoogle Scholar
  52. Refsgaard C, Højberg AL, Møller I et al (2010) Groundwater modeling in integrated water resources management—visions for 2020. Management 48:633–648. CrossRefGoogle Scholar
  53. Reynard E, Bonriposi M, Graefe O, Homewood C, Huss M, Kauzlaric M, Liniger H, Rey E, Rist S, Schädler B, Schneider F, Weingartner R (2014) Interdisciplinary assessment of complex regional water systems and their future evolution: how socioeconomic drivers can matter more than climate. WIREs Water 1:413–426. CrossRefGoogle Scholar
  54. Richey AS, Thomas BF, Lo MH, Reager JT, Famiglietti JS, Voss K, Swenson S, Rodell M (2015) Quantifying renewable groundwater stress with GRACE. Water Resour Res 51:5217–5237. CrossRefGoogle Scholar
  55. Rotstayn LD, Jeffrey SJ, Collier MA, Dravitzki SM, Hirst AC, Syktus JI, Wong KK (2012) Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations. Atmos Chem Phys 12:6377–6404. CrossRefGoogle Scholar
  56. Ruelland D, Ardoin-Bardin S, Collet L, Roucou P (2012) Simulating future trends in hydrological regime of a large Sudano-Sahelian catchment under climate change. J Hydrol 424-425:207–216. CrossRefGoogle Scholar
  57. Salinas CX, Gironás J, Pinto M (2016) Water security as a challenge for the sustainability of La Serena-Coquimbo conurbation in northern Chile: global perspectives and adaptation. Mitig Adapt Strateg Glob Chang 21:1235–1246. CrossRefGoogle Scholar
  58. Shiklomanov IA (1991) The world’s water resources. In: Proc. Int. Symp. To commemorate 25 years of the IHP, pp 93–126Google Scholar
  59. Smida H (2008) Apports des Systèmes d’Informations Géographiques (SIG) pour une approche intégrée dans l’étude et la gestion des ressources en eau des systèmes aquifères de la région de Sidi Bouzid (Tunisie centrale) Thèse de doctorat d’Etat, Faculté des Sciences de Sfax, p 283Google Scholar
  60. Sullivan C (2002) Calculating a water poverty index. World Dev 30:1195–1210. CrossRefGoogle Scholar
  61. Thomson A, Calvin K, Smith S et al (2011) RCP4. 5: a pathway for stabilization of radiative forcing by 2100. Clim Chang:1–25Google Scholar
  62. UNEP_United Nations Environment Programme (2004) GEO yearbook 2003. Earthscan Publications Ltd, LondonGoogle Scholar
  63. UNESCO (2006) Water: a shared responsibility. The United Nations World Water Development Report. Water Resources 21:120–156. CrossRefGoogle Scholar
  64. USDA-SCS (1972) National engineering handbook. United States Soil Conservation Service (US-SCS), USDA, Washington, DC 593 pGoogle Scholar
  65. Voldoire A, Sanchez-Gomez E, Salas y Mélia D, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M, Déqué M, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine MP, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Chauvin F (2013) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40:2091–2121. CrossRefGoogle Scholar
  66. Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289:284–288. CrossRefGoogle Scholar
  67. Wada Y, Van Beek LPH, Van Kempen CM et al (2010) Global depletion of groundwater resources. Geophys Res Lett 37:1–5. CrossRefGoogle Scholar
  68. Wang X, Zhang J, Shahid S, Guan EH, Wu YX, Gao J, He RM (2016) Adaptation to climate change impacts on water demand. Mitig Adapt Strateg Glob Chang 21:81–99. CrossRefGoogle Scholar
  69. WRI—World Resources Institute (2013) Aqueduct country and river basin rankings.

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Geography and SustainabilityUniversity of LausanneLausanneSwitzerland
  2. 2.Department of Geology, National Engineering School of SfaxUniversity of SfaxSfaxTunisia

Personalised recommendations