Advertisement

The Epistemic Importance of Technology in Computer Simulation and Machine Learning

  • Michael ReschEmail author
  • Andreas Kaminski
Article
  • 58 Downloads

Abstract

Scientificity is essentially methodology. The use of information technology as methodological instruments in science has been increasing for decades, this raises the question: Does this transform science? This question is the subject of the Special Issue in Minds and Machines “The epistemological significance of methods in computer simulation and machine learning”. We show that there is a technological change in this area that has three methodological and epistemic consequences: methodological opacity, reproducibility issues, and altered forms of justification.

Keywords

Computer simulation Machine learning Epistemic opacity Reproducibility Trans-classical technique Trust Reliability 

Notes

References

  1. Barberousse, A., & Vorms, M. (2014). About the warrants of computer-based empirical knowledge. Synthese, 191(15), 3595–3620.CrossRefGoogle Scholar
  2. Blumenberg, H. (1999). Lebenswelt und Technisierung unter Aspekten der Phänomenologie. Wirklichkeiten in denen wir leben. Aufsätze und eine Rede (pp. 7–54). Stuttgart: Reclam.Google Scholar
  3. Coady, C. (1992). Testimony. A philosophical study. Oxford: Clarendon Press; Oxford University Press.Google Scholar
  4. Faulkner, P. (2015). Knowledge on trust. Oxford: Oxford University Press.Google Scholar
  5. Feyerabend, P. K. (1975). Against method. Outline of an anarchistic theory of knowledge. London: Verso.Google Scholar
  6. Feynman, R. P. (2010). The Feynman lectures on physics. Mainly electromagnetism and matter. New York: Basic Books.Google Scholar
  7. Frigg, R., & Reiss, J. (2009). The philosophy of simulation. Hot new issues or same old stew? Synthese, 169(3), 593–613.MathSciNetCrossRefGoogle Scholar
  8. Goswami, G., Ratha, N., Agarwal, A., Singh, R., Vatsa, M. (2018). Unravelling robustness of deep learning based face recognition against adversarial attacks. Online available: http://arxiv.org/pdf/1803.00401v1. Accessed November 22, 2018.
  9. Grüne-Yanoff, T. (2017). Seven problems with massive simulation models for policy decision-making. In M. Resch, A. Kaminski, & P. Gehring (Eds.), Science and art of simulation I (SAS). Exploring—understanding—knowing (pp. 85–101). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  10. HPC-10 (2013). Reduzierung numerischer sensitivitäten in der crashsimulation auf HPC-rechnern. Report.Google Scholar
  11. Hubig, C. (2006). Die Kunst des Möglichen I. Technikphilosophie als Reflexion der Medialität. Bielefeld: Transcript.Google Scholar
  12. Humphreys, P. (2004). Extending ourselves. Computational science, empiricism, and scientific method. New York: Oxford University Press.CrossRefGoogle Scholar
  13. Humphreys, P. (2009). The philosophical novelty of computer simulation methods. Synthese, 169(3), 615–626.MathSciNetCrossRefGoogle Scholar
  14. Husserl, E. (1970). The crisis of European sciences and transcendental phenomenology. An introduction to phenomenological philosophy. Evanston: Northwestern University Press.Google Scholar
  15. Husserl, E. (1989). Fünf Aufsätze über Erneuerung. Aufsätze und Vorträge (1922–1937) (pp. 3–124). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  16. Kaminski, A. (2013). Husserl: Die Krisis der europäischen Wissenschaften und die transzendentale Phänomenologie. In C. Hubig, A. Huning, & G. Ropohl (Eds.), Nachdenken über Technik. Die Klassiker der Technikphilosophie und neuere Entwicklungen. Darmstädter Ausgabe (pp. 186–192). Berlin: Edition Sigma.Google Scholar
  17. Kaminski, A., Resch, M., & Küster, U. (2018). Mathematische Opazität. Reproduzierbarkeit in der Computersimulation. Jahrbuch Technikphilosophie, 4, 253–277.Google Scholar
  18. Kuorikoski, J. (2012). Simulation and the sense of understanding. In: Humphreys, P., & Imbert, C. (Eds.), Models, simulations, and representations (pp. 168–186). New York: Routledge.Google Scholar
  19. Kurakin, A., Goodfellow, I., Bengio, S. (2017). Adversarial examples in the physical world. Under review as a conference paper at ICLR 2017. Online available https://www.researchgate.net/profile/Ian_Goodfellow/publication/305186613_Adversarial_examples_in_the_physical_world/links/5830d14508ae138f1c05ef15/Adversarial-examples-in-the-physical-world.pdf?origin=publication_detail. Visited 11 Nov 2018.
  20. Lenhard, J. (2011). Epistemologie der Iteration Gedankenexperimente und Simulationsexperimente. Deutsche Zeitschrift für Philosophie, 59(1), 131–145.Google Scholar
  21. Lenhard, J. (2015). Mit allem rechnen—zur Philosophie der Computersimulation. Berlin: de Gruyter.CrossRefGoogle Scholar
  22. Newman, J. (2016). Epistemic opacity, confirmation holism and technical debt: Computer simulation in the light of empirical software engineering. In: Gadducci, F., & Tavosanis, M. (Eds.), History and philosophy of computing (pp. 256–272). Cham: Springer.CrossRefGoogle Scholar
  23. Popper, K. R. (2002). The logic of scientific discovery. London, New York: RoutledgezbMATHGoogle Scholar
  24. Rosenfeld, A., Zemel, R., Tsotsos, J.K. (2018). The elephant in the room. Online available http://arxiv.org/pdf/1808.03305v1. Visited 11 Nov 2018.
  25. Saam, N. (2017). Understanding social science simulations. Distinguishing two categories of simulations. In M. Resch, A. Kaminski, & P. Gehring (Eds.), Science and art of simulation I (SAS) Exploring—understanding—knowing (pp. 67–84). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  26. Schappals, M., Mecklenfeld, A., Kröger, L., Botan, V., Köster, A., Stephan, S., et al. (2017). Round robin study: Molecular simulation of thermodynamic properties from models with internal degrees of freedom. Journal of Chemical Theory and Computation, 13(9), 4270–4280.CrossRefGoogle Scholar
  27. Symons, J., & Alvarado, R. (2016) Can we trust Big Data? Applying philosophy of science to software. Big Data and Society, 3(2), 1–17.CrossRefGoogle Scholar
  28. von Foerster, H. (2003). Understanding understanding. Essays on cybernetics and cognition. New York: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Director of the High-Performance Computing CenterUniversity of StuttgartStuttgartGermany
  2. 2.Department for Philosophy of Science and Technology of Computer Simulation, High-Performance Computing CenterUniversity of StuttgartStuttgartGermany

Personalised recommendations