Features of Operational Control of Precision Angle-Measuring Structures

  • A. V. Kir’yanovEmail author
  • A. A. Zotov
  • A. G. Karakotskii
  • V. P. Kir’yanov
  • A. D. Petukhov
  • V. V. Chukanov

The most important sources of errors originating in monitoring angle-measurement structures (scales, circular scales, code disks) are obtained from within the reading systems of measurement devices. Prospects for using the differential method of measuring metrological parameters of angle-measurement structures are shown in the case of production real-time monitoring.


operation control angle-measurement structures phase-statistical method differential method angle-measurement machines 


This research was conducted as part of the IAiE SO RAN State Assignment (Project IV.36.1.3, State Registration No. AAAA-A17-11706061006-6).


  1. 1.
    V. Portman and B. Peschansky, “Phase-statistical method and device for high precision and high efficiency angular measurements,” Precis. Eng., No. 25, 309–315 (2001).CrossRefGoogle Scholar
  2. 2.
    A. V. Kir’yanov, V. P. Kir’yanov, and V. V. Chukanov, “Using the differential method of measurement to control the accuracy of precision angle measurement structures,” Avtometriya, 52, No. 4, 45–52 (2016).Google Scholar
  3. 3.
    A. V. Kir’yanov and V. P. Kir’yanov, “Invariance of measurement results to the nonideal nature of transparent media when the accuracy of angle-measurement structures is being monitored,” Optich. Zh., No. 10, 43–49 (2018).Google Scholar
  4. 4.
    P. A. Pavlov, “Aspects of the cross-calibration method in laser goniometry,”Izmer. Tekhn., No. 9, 21–24 (2015).Google Scholar
  5. 5.
    N. Cho and J. Tu, “Roundness modeling of machined parts for tolerance analysis,” Precis. Eng., 25, No. 1, 35–47 (2001).CrossRefGoogle Scholar
  6. 6.
    A. A. Gusarov, Machine Rotor Balancing, Nauka, Moscow (2004).Google Scholar
  7. 7.
    P. A. Zhilin, “Dynamics of a gyrostat on an elastic base,” Diff. Uravn. Prots. Upravl., No. 1, 163–251 (1997),, acc. Jan. 21, 2019.
  8. 8.
    A. A. Savelov, Plane Curves. Systematization, Properties, and Applications. Reference Manual, Fizmatgiz, Moscow (1960).Google Scholar
  9. 9.
    V. F. Ionak, Kinematic Monitoring Instruments, Mashinostroenie, Moscow (1981).Google Scholar
  10. 10.
    G. Eger, “A three-dimensional coordinate-measurement machine with a resolution of 0.1 nm,” Avtometriya, 46, No. 4, 26–32 (2010).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. V. Kir’yanov
    • 1
    • 2
    Email author
  • A. A. Zotov
    • 1
  • A. G. Karakotskii
    • 1
  • V. P. Kir’yanov
    • 1
  • A. D. Petukhov
    • 1
  • V. V. Chukanov
    • 1
  1. 1.Institute of Automation and ElectrometrySiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations