Advertisement

An Algorithm for Cycle-Slip Detection in a Melbourne–Wübbena Combination Formed of Code and Carrier Phase GNSS Measurements

  • I. V. BezmenovEmail author
  • I. Yu. Blinov
  • A. V. Naumov
  • S. L. Pasynok
MEASUREMENTS IN INFORMATION TECHNOLOGIES
  • 4 Downloads

A new algorithm has been developed for the determination and elimination of jumps in the Melbourne–Wübbena combination, formed from the code and phase measurements in global navigational satellite systems. The algorithm more reliably, in comparison with analogous known algorithms, detects jumps in the data that are associated with time losses in the radio-receiving devices for phase capture of RF signals transmitted from satellites. Determination of the positions and values of jumps in a Melbourne–Wübbena combination is performed against the noise component and outliers. The algorithm was tested for actual measurements in global navigational satellite systems at two carrier frequencies.

Keywords

global navigational satellite systems (GNSS) GNSS measurements outliers data screening Melbourne–Wübbena combination cycle slips 

References

  1. 1.
    A. I. Perov and V. N. Kharisov, GLONASS: Principles of Construction and Operation, Radiotekhnika, Moscow (2010), 4th ed.Google Scholar
  2. 2.
    International GNSS Service, wwv.igs.org/network, acc. Apr. 4, 2018.
  3. 3.
    R. Dach, F. Andritsch, D. Arnold, et al., Bernese GPS Software, Ver. 5.2, R. Dach et al. (eds.), Astronomical Institute, University of Bern (2015).Google Scholar
  4. 4.
    W. G. Melbourne, “The case for ranging in GPS based geodetic systems,” in Proc. 1st Int. Symp. Precise Positioning with the Global Positioning System, C. Goad (ed.), US Department of Commerce, Rockville, Maryland (1985), pp. 375–386.Google Scholar
  5. 5.
    G. Wübbena, Software Developments for Geodetic Positioning with GPS Using Tl 4100 Code and Carrier Measurements, C. Goad (ed.), US Department of Commerce, Rockville, Maryland (1985), pp. 403–412.Google Scholar
  6. 6.
    G. Blewitt, “An automatic editing algorithm for GPS data,” Geophys. Res. Let., 17, No. 3, 199–202 (1990).ADSCrossRefGoogle Scholar
  7. 7.
    J. Sanz Subirana, M. Juan Zornoza, and M. Hernández-Pajares, Detector Based in Code and Carrier Phase Data: The Melburne–Wübbena Combination. ESA Navipedia, https://gssc.esa.int/navipedia/index.php/Detector_based_in_code_and_carrier_phase_data:_The_Melboume-Wübbena_combination, acc. Jan, 24, 2019.
  8. 8.
    T. A. Springer, “Modeling and validating orbits and clocks using the Global Positioning System,” in: Geodätisch-Geophysikalische Arbeiten in der Schweiz, Inst. Geodesy and Photogrammetry, ETH Zurich, Zurich (2000), Vol. 60.Google Scholar
  9. 9.
    I. V. Bezmenov, A. V. Naumov, and S. L. Pasynok, “An effective algorithm for elimination of outliers from data measurements of global navigation satellite systems,” Izmer. Tekhn., No. 9, 26–30 (2018), DOI: 10.32446/0368-1025it.2018-9-26-30.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • I. V. Bezmenov
    • 1
    Email author
  • I. Yu. Blinov
    • 1
  • A. V. Naumov
    • 1
  • S. L. Pasynok
    • 1
  1. 1.All-Russia Research Institute of Physicotechnical and Radio Measurements (VNIIFTRI)MendeleevoRussia

Personalised recommendations