Dependence of the Density of Entropy Production on the Rate of Changes in Temperature in the Linear Mode of Thermodynamics on the Examples of Graphite and Aluminum and Boron Nitrides

  • A. V. KostanovskiiEmail author
  • M. E. Kostanovskaya

We analyze the experimental thermograms of specimens in the form of plates of aluminum and boron nitrides heated by a laser and a freely cooled graphite sphere. It is shown that all thermograms can be referred to the linear law of thermodynamics. The linear dependence of density of the entropy production on the rate of changes in temperature is established. It is proposed to consider the rate dT/dτ as an additional variable for the density of entropy production in the linear thermodynamic law and apply this rate for the representation of the properties determined in the nonstationary thermal mode.


rate of changes in temperature density of entropy production linear law of thermodynamics 


  1. 1.
    A. V. Kostanovskii and M. E. Kostanovskaya, “Dependence of the density of entropy production on the rate of changes in temperature in the linear law of thermodynamics,” Izmer. Tekhn., No. 1, 52–57 (2019).Google Scholar
  2. 2.
    V. L. Vinogradov, A. V. Kostanovskii, and A. V. Kirillin, “Evaluation of the parameters of melting of aluminum nitride,” Teplofiz. Vysok. Temp., 30, No. 4, 731–737 (1992).Google Scholar
  3. 3.
    V. L. Vinogradov and A. V. Kostanovskii, “Determination of the parameters of melting of boron nitride,” Teplofiz. Vysok. Temp., 29, No. 6, 1112–1120 (1991).Google Scholar
  4. 4.
    A. E. Sheindlin (ed.), Emitting Properties of Solid Materials, Energiya, Moscow (1974).Google Scholar
  5. 5.
    A. V. Kostanovskii and M. E. Kostanovskaya, “Thermodynamic application of the method of electrostatic levitation,” Izmer. Tekhn., No. 9, 34–37 (2012).Google Scholar
  6. 6.
    Y. S. Touloukian (ed.), Thermophysical Properties of High Temperature Solid Materials, Collier-Macmillan, London (1967).Google Scholar
  7. 7.
    C. Ronchi, R. Beukers, H. Heinz, et al., “Graphite melting under laser pulse heating,” Int. J. Thermophys., 107–129 (1992).Google Scholar
  8. 8.
    A. V. Kostanovskii and M. E. Kostanovskaya, “Determination of the limits of applicability of the parabolic heat-conduction equation,” Izmer. Tekhn., No. 6, 38–42 (2008).Google Scholar
  9. 9.
    A. I. Lutkov, Thermal and Electric Properties of Carbon Materials, Metallurgiya, Moscow (1990).Google Scholar
  10. 10.
    G. V. Samsonov, Nonmetallic Nitrides, Metallurgiya, Moscow (1969).Google Scholar
  11. 11.
    D. Kondepudi and I. Prigogine, Modern Thermodynamics: From Heat Engines to Dissipative Structures, Wiley, Chichester (1999).Google Scholar
  12. 12.
    V. P. Isachenko, V. A. Osipova, and A. S. Sukomel, Heat Transfer, Energiya, Moscow (1975).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Joint Institute of High TemperaturesRussian Academy of Sciences (JIHT RAS)MoscowRussia

Personalised recommendations