Measurement of Velocity Fields of Nonstationary Air Vortices by Anemometry Using Particle Images

  • A. A. MochalovEmail author
  • A. Yu. Varaksin
  • A. N. Arbekov

We consider aspects of using the method of anemometry on particle images to measure the velocity fields of nonstationary air vortices. To prevent the loss of a cross-pair when a particle passes through a light curtain, a method is proposed for determining the time delay between frames. Methods for measuring the velocity fields of nonstationary air vortices are described taking into account the vertical velocity of particles when the actual velocity is reproduced from the measured horizontal projection in the case of using a two-dimensional (single-chamber) type of anemometry method.


optical diagnostics of vortex flows anemometry from particle images instantaneous velocity fields non-stationary air vortices 


  1. 1.
    S. V. Alekseenko, P. A. Kuibin, and V. L. Okulov, Introduction to the Theory of Concentrated Vortices, Institute for Computer Studies, Moscow-Izhevsk (2005).Google Scholar
  2. 2.
    D. V. Nalivkin, Hurricanes, Storms and Tornadoes. Geographical Features and Geological Activity, Nauka, Leningrad (1969).Google Scholar
  3. 3.
    R. Skorer, Aero-Hydrodynamics of the Environment, Mir, Moscow (1980).Google Scholar
  4. 4.
    A. Yu. Varaksin, M. E. Romash, and V. N. Kopeytsev, Tornado, FIZMATLIT, Moscow (2011).Google Scholar
  5. 5.
    M. E. Deich and A. E. Zaryankin, Gas Dynamics of Diffusers and Exhaust Nozzles of Turbomachines, Energy, Moscow (1970).Google Scholar
  6. 6.
    I. S. Anufriev, O. V. Sharypov, and E. Yu. Shadrin, “Diagnostics of a flow in a vortex furnace of a new type using digital tracer visualization,” Pisma ZhTF, 39, No. 10, 36–43 (2013).Google Scholar
  7. 7.
    A. N. Arbekov, “Experimental study of the effect of tangential swirling injection on the diffuser efficiency,” TVT, 54, No. 6, 934–938 (2016).Google Scholar
  8. 8.
    A. Yu. Varaksin, M. V. Protasov, and Yu. S. Teplitsky, “On the choice of particle parameters for visualization and diagnostics of free concentrated air vortices,” TVT, 52, No. 4, 581–587 (2014).Google Scholar
  9. 9.
    A. Yu. Varaksin, M. V. Protasov, N. V. Vasilyev, and D. V. Marinichev, “Analysis of parameters of tracer particles for optical diagnostics of vortex flows,” Izmer. Tekhn., No. 6, 46–49 (2015).Google Scholar
  10. 10.
    A. Y. Varaksin, M. E. Romash, and V. N. Kopeitsev, “Tornado-like gas-solid flow,” 6th Int. Symp. on Multiphase Flow, Heat Mass Transfer, and Energy Conversion. AIP Conf. Proc., 1207, 342–347 (2010).Google Scholar
  11. 11.
    A. Y. Varaksin, E. E. Romash, V. N. Kopeitsev, and M. A. Gorbachev, “Simulation of free thermal vortices: generation, stability, control,” TVT, 48, No. 6, 965–972 (2010).Google Scholar
  12. 12.
    A. Y. Varaksin, E. E. Romash, V. N. Kopeitsev, and M. A. Gorbachev, “Physical modeling of airspouts: some dimensionless parameters,” TVT, 49, No. 2, 317–320 (2011).Google Scholar
  13. 13.
    BobCAT Hardware User`s Manual (intelligent, high-resolution, field upgradeable, programmable, 8/10/12/14 bit digital cameras), Rev. 2.0.1, Imperx Inc., Boca Raton, FL (2012),, acc. 10.19.2018.
  14. 14.
    E. K. Akhmetbekov, A. V. Bilsky, Yu. A. Lozhkin, et al., “The control system of the experiment and data processing obtained by the methods digital tracer visualization (ActualFlow),” Vychisl. Met. Program., No. 7, 79–85 (2006).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. A. Mochalov
    • 1
    • 2
    Email author
  • A. Yu. Varaksin
    • 1
    • 2
  • A. N. Arbekov
    • 1
  1. 1.Bauman Moscow State Technical University (BMSTU)MoscowRussia
  2. 2.Joint Institute of High Temperatures, Russian Academy of Sciences (JIHT RAS)MoscowRussia

Personalised recommendations