Effective Estimates of the Stokes Parameters of Partially Polarized Radiation in Conditions of Normal Additive Noise

  • V. I. SmirnovEmail author

Methods of parametric information theory were used to study the minimum variance boundary of estimates of the Stokes parameters of partially polarized quasi-monochromatic radiation in a polarimetric framework with the analyzer and the phase compensator under conditions of normal additive noise. Optimal plans for measurements and the corresponding variance matrixes are found, based on analysis of information density distributions regarding the Stokes parameters for coefficients of the angle of rotation of the analyzer and phase shift of the compensator. Formulas for obtaining effective estimates of the Stokes parameters are introduced. Limit errors of the estimates of the polarization parameters and their distributions over the Poincaré sphere are calculated.


polarization measurements effective estimates information density Stokes parameters Poincaré sphere degree of polarization 


  1. 1.
    M. Born and E. Wolf, Principles of Optics [Russian translation], Nauka, Moscow (1973).Google Scholar
  2. 2.
    Y. Bard, Nonlinear Parameter Estimation [Russian translation], Statistika, Moscow (1979).Google Scholar
  3. 3.
    V. I. Smirnov, “Fundamental limitations on the accuracy of simultaneous measurements of parameters of optical field parameters,” Izmer. Tekhn., No. 9, 26–31 (2010).Google Scholar
  4. 4.
    V. I. Smirnov, “Uncertainty relations and error relations in optical measurements,” Izmer. Tekhn., No. 7, 15–19 (2014).Google Scholar
  5. 5.
    V. I. Mudrov and V. L. Kushka, Measurement Processing Methods, Sov. Radio, Moscow (1983).Google Scholar
  6. 6.
    B. S. Rinkevichyus, Laser Diagnostics of Flows, Izd. MEI, Moscow (1990).Google Scholar
  7. 7.
    E. F. Ishchenko and A. L. Sokolov, Polarization Analysis, Znak, Moscow (1998).Google Scholar
  8. 8.
    B. S. Rinkevichyus, Laser Doppler Anemometry, Knorus, Moscow (2017).Google Scholar
  9. 9.
    A. S. Akent’ev, A. L. Sokolov, M. A. Sadovnikov, and G. V. Simonov, “Polarization analysis of the beam-steering device of quantum optical systems,” Opt. Spektrosk., 122, No. 6, 1044–1050 (2017).Google Scholar
  10. 10.
    A. L. Sokolov, “Optical vortices with axisymmetric polarization structure,” Opt. Eng., No. 56 (1), 014109 (2017).Google Scholar
  11. 11.
    I. I. Akhmetov, P. N. Frolov, B. S. Rinkevichyus, et al., “An achromatic 3D-interferometer for monitoring and analyzing wavefront quality,” Izmer. Tekhn., No. 8, 28–30 (2013).Google Scholar
  12. 12.
    P. N. Frolov, V. I. Anan’eva, L. V. Ksanfomality, and A. V. Tavrov, “Stellar-coronagraph observations of the phase curves of exoplanets,” Astron. Vestn., 49, No. 6, 448 (2015).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Research University – Moscow Power Engineering Institute (MPEI)MoscowRussia

Personalised recommendations