Advertisement

Fast Algorithm for Choosing Blur Coefficients in Multidimensional Kernel Probability Density Estimates

  • A. V. LapkoEmail author
  • V. A. Lapko
Article

A method is proposed for quickly choosing the blur coefficients of kernel functions in a non-parametric estimate of a multidimensional probability density of Rosenblatt–Parzen type. The technique is based on the analysis of the asymptotic properties of a multidimensional probability density estimate. The properties of the fast algorithm for choosing the blur coefficients of a kernel probability density estimate are investigated.

Keywords

non-parametric estimation of multidimensional probability density choice of blur coefficients Rosenblatt–Parzen estimate fast optimization algorithm asymptotic properties multidimensional data analysis 

References

  1. 1.
    A. V. Lapko and V. A. Lapko, Multilevel Non-Parametric Information Processing Systems, Sib-GAU, Krasnoyarsk (2013).Google Scholar
  2. 2.
    M. Rudemo, “Empirical choice of histogram and kernel density estimators,” Scand. J. Stat., No. 9, 65–78 (1982).Google Scholar
  3. 3.
    P. Hall, “Large-scale optimality of least squares. Cross-validation in density estimation,” Ann. Statist., 11, 1156–1174 (1983).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    M. Jiang and S. B. Provost, “A hybrid bandwidth selection methodology for particle density,” J. Stat. Comput. Simul., 84, No. 3, 614–627 (2014).MathSciNetCrossRefGoogle Scholar
  5. 5.
    S. Dutta, “Cross-validation Revisited,” Commun. Stat.-Simul. Comput., 45, No. 2, 472–490 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    N.-B. Heidenreich, A. Schindler, and S. Sperlich, “Bandwidth selection for kernel density estimation: a review of fully automatic selectors,” AStA Adv. Stat. Anal., 97, No. 4, 403–433 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    A. V. Lapko and V. A. Lapko, “Analysis of optimization methods for non-parametric estimation of probability density based on the blur coeffi cient of kernel functions,” Izmer. Tekhn., No. 6, 3–8 (2017).Google Scholar
  8. 8.
    M. L. Borrajo, W. González-Manteiga, and M. D. Martínez-Miranda, “Bandwidth selection for length-biased data,” J. Non-Param. Stat., 29, No. 3, 636–668 (2017).CrossRefzbMATHGoogle Scholar
  9. 9.
    S. Chen, “Optimal bandwidth selection for kernel density functionals estimation,” J. Probab. Stat., 2015, 1–21 (2015).MathSciNetCrossRefGoogle Scholar
  10. 10.
    S. J. Sheather, “Density Estimation,” Stat. Sci. , 19, No. 4, 588–597 (2004).CrossRefzbMATHGoogle Scholar
  11. 11.
    B. W. Silverman, Density Estimation for Statistics and Data Analysis, Chapman and Hall, London (1986).CrossRefzbMATHGoogle Scholar
  12. 12.
    D. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization, John Wiley, New York (1992).CrossRefzbMATHGoogle Scholar
  13. 13.
    A. W. Bowman and A. Azzalini, Applied Smoothing Techniques for Data Analysis, Oxford Univ. Press, London (1997).zbMATHGoogle Scholar
  14. 14.
    E. Parzen, “On the estimation of a probability density function and mode,” Ann. Math. Stat. 33, No 3, 1065–1076 (1962).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    L. Devroy and L. Dierfi , Non-Parametric Density Estimation (L1-approach), Mir, Moscow (1988).Google Scholar
  16. 16.
    V. A. Epanechnikov, “Non-parametric estimation of multidimensional probability density,” Teor. Ver. Primen., 14, No. 1, 156–161 (1969).MathSciNetzbMATHGoogle Scholar
  17. 17.
    A. V. Lapko and V. A. Lapko, “Regression estimate of the multidimensional probability density and its properties,” Optoelectr., Instrument. Data Proc., 50, No. 2, 148–153 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Computational ModelingSiberian Branch of the Russian Academy of SciencesKrasnoyarskRussia
  2. 2.Reshetnev Siberian State University of Science and TechnologyKrasnoyarskRussia

Personalised recommendations