Advertisement

Measurement Techniques

, Volume 61, Issue 9, pp 955–958 | Cite as

Microelectronic Gas Resistive Sensor Based on Nanocrystalline Tin Dioxide Films with Terbium and Antimony Additives

  • S. M. Kalugin
  • A. M. Gulyaev
  • D. A. Stroganov
  • O. B. Sarach
  • A. A. Tevyashov
  • V. A. Kotov
PHYSICOCHEMICAL MEASUREMENTS
  • 4 Downloads

The technology of microelectronic resistive gas sensors is considered. Heater and thermistor contacts are formed on an oxidized silicon substrate by sputtering a nichrome film and subsequent photolithography in combination with reactive magnetron sputtering of a nanocrystalline tin dioxide film with terbium and antimony additives. A 1.5 × 1.5 mm sensor requires 90 mW for heating to optimal working temperature of 250–280°C. The sensor has very high sensitivity to alcohols and low sensitivity to benzene and acetone.

Keywords

resistive gas sensor silicon microelectronic technology tin dioxide additives terbium antimony high sensitivity to alcohol selectivity 

References

  1. 1.
    T. Seiama, A. Kato, and K. Fujuishi, “A new detector for gaseous components using semiconductive thin films,” Anal. Chem., 34, 1502–1503 (1962).CrossRefGoogle Scholar
  2. 2.
    G. Korotcenkov and B. K. Cho, “Metal oxide compose in the corrective gas sensors and sensors,” Sensor. Actuat. B-Chem., 244, 182–210 (2017).CrossRefGoogle Scholar
  3. 3.
    Das Soumen and V. Jayaraman, “SnO2: A comprehensive review and gas sensors,” Prog. Mater. Sci., 66, 112–255 (2014).CrossRefGoogle Scholar
  4. 4.
    V. V. Krivetskiy, M. N. Rumyantseva, and A. M. Gaskov, “Chemical modification of nanocrystalline tin dioxide for selective gas sensors,” Usp. Khimii, 82, No. 10, 917–941 (2013).CrossRefGoogle Scholar
  5. 5.
    A. M. Gulyaev, O. B. Mukhina, I. B. Varlashev, O. B. Sarach, A. V. Titov, M. S. Burtsev, and V. V. Prokhorov, Features of the Technology and Properties of Thin-Film Sensors Based on SnO 2 , Obtained by Reactive Magnetron Sputtering, Sensor ANO IRISEN (2001), pp. 10–21.Google Scholar
  6. 6.
    A. M. Gulyaev, O. B. Sarach, V. A. Kotov, A. A. Vanin, Yu. V. Anufriev, and A. V. Konovalov, “Resistive gas sensors with high sensitivity to alcohols based on nanocrystalline oxide films tin with terbium and antimony additives,” Izmer. Tekhn., No. 7, 34–37 (2017).Google Scholar
  7. 7.
    I. T. Weber, A. Valentini, L. F. D. Probst, E. Longo, and E. R. Leite, “Catalytic activity of nanometric pure and rare earth-doped SnO2 samples,” Mater. Lett., 62, No. 10–11, 1677–1680 (2008).Google Scholar
  8. 8.
    A. M. Gulyaev, O. B. Sarach, V. A. Kotov, A. I. Kobzev, and A. D. Petrov, “Effect of humidity on the parameters of gas sensors based on tin oxide nanocrystalline films with terbium and antimony additives,” Micro- and Nanotechnology in Electronics: Proc. IX Int. Sci. Tech. Conf., Nalchik (2017), pp. 466–469.Google Scholar
  9. 9.
    A. M. Guljaev, O. B. Sarach, A. A. Vanin, and M. A. Slepneva, “‘The Electronic Nose’ on the base of nanocrystalline films of tin and rare earth oxides,” SPITSE–2014: Simp. Sense/Enable, Limenau, Germany (2014).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. M. Kalugin
    • 1
  • A. M. Gulyaev
    • 2
  • D. A. Stroganov
    • 1
  • O. B. Sarach
    • 2
  • A. A. Tevyashov
    • 1
  • V. A. Kotov
    • 2
  1. 1.Russian Space SystemsMoscowRussia
  2. 2.National Research University – Moscow Power Engineering Institute (MPEI)MoscowRussia

Personalised recommendations