Measurement Techniques

, Volume 61, Issue 9, pp 932–936 | Cite as

Stabilization of the Temperature of Resonator of an Acoustic Gas Thermometer

  • S. М. OsadchiiEmail author
  • B. G. Potapov
  • A. A. Petukhov
  • N. A. Sokolov
  • О. E. Dragunov
  • K. D. Pilipenko

The application of an AK-10 thermocontroller developed at the All-Russia Research Institute of Physicotechnical and Radio Measurements in the temperature control system of an acoustic gas thermometer makes it possible to improve the characteristics of this system. We performed temperature measurements with the use of an MI6020T bridge and demonstrate the possibility of stabilization of temperature of the resonator at a level of 15 μK. The total standard relative uncertainty of temperature measurements in the transmission of the values of temperature from the resonator to a resistance thermometer is reduced down to 0.25 ppm.


quasispherical resonator acoustic gas thermometer PID-controller thermocontroller Translated from Izmeritel’naya Tekhnika, No. 9, pp. 54–57, September, 2018. 


  1. 1.
    G. Machin, “The Kelvin redefined,” Meas. Sci. Technol., 29, Nо. 2, 022001 (2018).Google Scholar
  2. 2.
    L. Pitre, F. Sparasci, L. Risegari, C. Guianvarc’h , C. Martin C., M. E. Himbert, M. D. Plimmer, A. Allard, B. Marty, P. A. Giuliano Albo, B. Gao, M. R. Moldover, and J. B. Mehl, “New measurement of the Boltzmann constant k by acoustic thermometry of helium-4 gas,” Metrologia, 54, Nо. 6, S856–S873 (2017).Google Scholar
  3. 3.
    R. M. Gaviosso, “A determination of the molar gas constant R by acoustic thermometry in helium,” Metrologia, 52, Nо. 5, S274–S304 (2015).Google Scholar
  4. 4.
    S. M. Osadchii, B. G. Potapov, K. D. Pilipenko, E. G. Aslanyan, and A. N. Shchipunov, “Measurement of the Boltzmann constant in a quasispherical acoustic resonator,” Izmer. Tekhn., No. 7, 8–13 (2017).Google Scholar
  5. 5.
    S. M. Osadchii, B. G. Potapov, and K. D. Pilipenko, “Acoustic gas thermometer for the realization of a new definition of Kelvin degree on the basis of the fundamental Boltzmann constant,” Alman. Metrol., No. 12, 15–42 (2017).Google Scholar
  6. 6.
    S. M. Osadchii, B. G. Potapov, K. D. Pilipenko, E. G. Aslanyan, and A. N. Shchipunov, “Measurements of the Boltzmann constant on the equipment of acoustic gas thermometer,” Vestn. Metrol., No. 3, 5–9 (2017).Google Scholar
  7. 7.
    J. Pearce, A. I. Pokhodun, B. Fellmuth, D. R. White, R. L. Rusby, P. P. M. Steur, O. Tamura, and W. Tew, Platinum resistance thermometry,” Guide to the Realization of the ITS-90, BIPM (2016).Google Scholar
  8. 8.
    V. M. Malyshev and K. D. Pilipenko, “Transmission of the value of temperature of the triple point of water to the acoustic resonator by the comparison method,” Izmer. Tekhn., No. 12, 33–36 (2016).Google Scholar
  9. 9.
    GOST Р 8.736–2011, GSI. Repeated Direct Measurements. Methods for Processing the Results of Measurements. Basic Principles, Standartinform, Moscow (2013).Google Scholar
  10. 10.
    B. Gao, C. Pan, L. Pitre, Y. Chen, H. Zhang, Y. Song, H. Chen, W. Liu, D. Han, and E. Luo, “Chinese SPRIGT realizes high temperature stability in the range of 5–25 K,” Sci. Bull., 63, Nо. 12, 580–594 (2018).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. М. Osadchii
    • 1
    Email author
  • B. G. Potapov
    • 1
  • A. A. Petukhov
    • 1
  • N. A. Sokolov
    • 1
  • О. E. Dragunov
    • 1
  • K. D. Pilipenko
    • 1
  1. 1.All-Russia Research Institute of Physicotechnical and Radio Measurements (VNIIFTRI)MendeleevoRussia

Personalised recommendations