Advertisement

Measurement Techniques

, Volume 61, Issue 8, pp 836–839 | Cite as

Estimate of Nonuniformity of Dose Distribution in Regime of Total Therapeutic Irradiation with In Vivo Dosimetry Using Semiconductor Detectors

  • I. M. Lebedenko
  • S. S. Khromov
  • D. V. Neudakhin
  • A. A. Belova
MEDICAL AND BIOLOGICAL MEASUREMENTS
  • 5 Downloads

We have estimated the nonuniformity of the dose distribution along the body of a patient using in vivo dosimetry by semiconductor detectors with total therapeutic irradiation of cancer patients before bone marrow transplantation. The method of in vivo dosimetry was developed and used at the Blokhin Oncology Center since 2007. Based on the results of the investigation of 35 patients, we determined a mean nonuniformity of 10–15% of the dose distribution along the body of the patient, which conforms to international recommendations. We show a linear dependence of the accumulated dose on the mass of the patient.

Keywords

in vivo dosimetry semiconductor detectors radiation therapy total irradiation 

References

  1. 1.
    A. V. Sumin et al., “Verification of the operation of a scintillation, multichannel clinical MKD-04 dosimeter in a collimated, gamma-radiation beam from a 60Co source,” Med. Fizika, No. 3 (75), 24–33 (2017).Google Scholar
  2. 2.
    G. Rikner, Silicon Diodes as Detectors in Relative Dosimetry of Photon, Electron and Proton Radiation Fields, Uppsala Univ., Uppsala (1983).Google Scholar
  3. 3.
    J. Van Dam and G. Marinello, “Methods for in vivo dosimetry in external radiotherapy,” ESTRO Booklet No. 1, Scribd Inc., Brussels (Belgium), (1994), pp. 12–35.Google Scholar
  4. 4.
    D. Huyskens et al., “Practical guidelines for the implementation of in vivo dosimetry with diodes in external radiotherapy with photon beams (entrance dose),” ESTRO Booklet No. 5, Scribd Inc., Brussels (Belgium), (2001), pp. 4–12.Google Scholar
  5. 5.
    T. A. Krylova, O. S. Talariko, and I. M. Lebedenko, “Use of semiconductor detectors for in vivo dosimetry for total body radiation,” Med. Fizika, No. 1 (73), 25–29 (2017).Google Scholar
  6. 6.
    A. J. Olch et al., “Dosimetric effects caused by couch tops and immobilization devices: A report of AAPM Task Group 176,” Med. Physics, 41, Iss. 6, Pt. 1, 2–30 (2014).Google Scholar
  7. 7.
    K. N. Melkova et al., “Total irradiation of the body of a person for bone-marrow transplantation,” Klin. Onkogematol., Fund. Issl. Klin. Prakt., 5, No. 2, 96–114 (2012).Google Scholar
  8. 8.
    I. M. Lebedenko et al., “Carrying out total irradiation of a patient before bone-marrow transplantation,” Rad. Onkol. Yad. Med., No. 2, 30–36 (2012).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. M. Lebedenko
    • 1
    • 2
  • S. S. Khromov
    • 1
  • D. V. Neudakhin
    • 1
  • A. A. Belova
    • 1
  1. 1.Blokhin National Medical Research Center of OncologyMinistry of Health of the Russian FederationMoscowRussia
  2. 2.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations