Advertisement

Measurement Techniques

, Volume 61, Issue 8, pp 806–811 | Cite as

Calibration of Multicomponent Magnetic Measuring Systems as an Inverse Problem of Magnetometry

  • L. А. Batalov
  • V. V. Nesterov
ELECTROMAGNETIC MEASUREMENTS
  • 5 Downloads

We propose a method for calibration of the systems with multicomponent emitter and sensor. This method guarantees the possibility of simultaneous determination of a collection of parameters of this system. The magnetic-field induction is measured at the points of location of components of the sensor in its motion over the plane with marking specified by a single parameter (size of the cell). The objective function is formed according to the processed data of measurements and its global minimum is found by the methods of nonlinear programming. This problem has a unique solution if one of the magnetic parameters of the system, namely, the transmission coefficient of one component of the sensor or the magnetic moment of one component of the emitter, is a priori known. We propose a procedure for the evaluation of the error of positioning of the multicomponent emitter and magnetic-field sensor.

Keywords

magnetic moment magnetic-field induction nonlinear programming magnetic tracking 

References

  1. 1.
    G. L. Maksimov, F. V. Nosov, A. D. Fogel,’ V. V. Semenov, and A. A. Eliseeva, “Complex diagnostics of the engineering state of pipelines,” Korroz. Territor. Neftegaz, No. 2(37) (2017).Google Scholar
  2. 2.
    M. Li, T. Bien, and G. Rose, “FPGA based electromagnetic tracking system for fast catheter navigation,” Int. J. Sci. Eng. Res., 4, Iss. 9, 2566–2570 (2013), DOI: https://doi.org/10.14299/ ijser.2013.09.001.Google Scholar
  3. 3.
    Yu. M. Ivanov, V. G. Semenov, and K. V. Osipenko, “Angular compatibility of three-component differential magnetometer,” Nauch. Obozren. Tekh. Nauki, No. 2, 42–46 (2017).Google Scholar
  4. 4.
    Yu. M. Ivanov and V. G. Semenov, “Correcting matrices–a way toward increasing the accuracy of three-component magnetometer,” Izmer. Tekhn., No. 6, 46–51 (2013).Google Scholar
  5. 5.
    T. Schroeder, “An accurate magnetic field solution for medical electromagnetic tracking coils at close range,” Appl. Phys., 117, 224504 (2015), DOI: https://doi.org/10.1063/1.4922667.
  6. 6.
    P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, London (1981).Google Scholar
  7. 7.
    P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,” IEEE Trans. Pattern Anal. Mach. Intell., 14, Nо. 2, 239–256 (1992).Google Scholar
  8. 8.
    A. M. Franz, T. Haidegger, W. Birkfellner, et al., “Electromagnetic tracking in medicine–a review of technology, validation, and applications,” IEEE Trans. Med. Imag., 33, Nо. 8, 1702–1725 (2014).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • L. А. Batalov
    • 1
  • V. V. Nesterov
    • 2
  1. 1.Konstantinov Petersburg Institute of Nuclear PhysicsGatchinaRussia
  2. 2.Magnitnye PriborySt. PetersburgRussia

Personalised recommendations