Advertisement

A Refraction Method of Measurement of the Rate of Evaporation of a Liquid Droplet Under Conditions of Pinning of a Contact Line

  • I. N. Pavlov
  • I. L. Raskovskaya
  • S. P. Yurkevichyus
OPTOPHYSICAL MEASUREMENTS

A laser refraction method of measurement of the rate of evaporation of a liquid droplet on a horizontal substrate under the conditions of pinning of a contact line is developed. Experimental values of the contact wetting angle in the evaporation process are obtained with the use of refraction images of the droplet. The time dependence of the volume of an evaporated droplet is established based on these values.

Keywords

refractometry laser beam liquid droplet horizontal substrate rate of evaporation pinning of a contact line 

References

  1. 1.
    B. S. Rinkevichyus, M. V. Esin, I. L. Raskovskaya, and A. V. Tolkachev, Patent 105433 RF, “A method of visualization and measurement of the parameters of physical processes in liquid media,” Izobret. Polezn. Modeli (2010).Google Scholar
  2. 2.
    V. T. Nguen, I. L. Raskovskaya, and B. S. Rinkevichyus, “Algorithms and error in quantitative diagnostics of optical irregularities by means of laser refractography,” Izmer. Tekhn., 83, No. 4, 24–28 (2009).Google Scholar
  3. 3.
    I. L. Raskovskaya, “Laser refraction tomography of phase objects,” Kvant. Elektron., 43, No. 6, 554–562 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    S. P. Yurkevichyus and B. S. Rinkevichyus, “Development of new optical methods for the study of flows of liquids and gas at the Fabricant Department of Physics, MPEI,” Innov. Ekspert., Iss. 2 (15), 288–292 (2015).Google Scholar
  5. 5.
    H. K. Dhavaleswarapu, C. P. Migliaccio, S.V. Garimella, and J. Y. Murthy, “Experimental investigation of evaporation from low-contact-angle sessile droplets,” Langmuir, 26, Iss. 2, 880–888 (2010).CrossRefGoogle Scholar
  6. 6.
    A. A. Gunay, S. Sett, J. Oh, and N. Miljkovich, “Steady method for the analysis of evaporation dynamics,” Langmuir, 33, Iss. 43, 12007–12015 (2017).CrossRefGoogle Scholar
  7. 7.
    V. I. Saverchenko, S. P. Fisenko, and Yu. A. Khodyko, “Kinetics of picoliter binary droplet evaporation on a substrate at reduced pressure,” Colloid J., 77, No. 1, 71–76 (2015).CrossRefGoogle Scholar
  8. 8.
    R. Bhardwaj, J. P. Longtin, and D. Attinger, “Interfacial temperature measurements, high-speed visualization and finite-element simulations of droplet impact and evaporation on a solid surface,” Int. J. Heat Mass Transf., 53, 3733–3744 (2010).CrossRefGoogle Scholar
  9. 9.
    K. M. Schweigler, M. Ben Said, S. Seifritz, et al., “Experimental and numerical investigation of drop evaportation depending on the shape of the liquid/gas interface,” Int. J. Heat Mass Transf., 105, 655–663 (2017).CrossRefGoogle Scholar
  10. 10.
    Yu. Yu. Tarasevich, “Mechanisms and models of dehydration self-organization of biological liquids,” Usp. Fiz. Nauk, 174, No. 7, 779 –789 (2004).CrossRefGoogle Scholar
  11. 11.
    T. A. Yakhno and V. G. Yakhno, “Foundations of structural evolution of desiccating droplets of biological liquids,” Zh. Tekh. Fiz., 79, Iss. 8, 133–141 (2009).Google Scholar
  12. 12.
    K. O. Vlasov and P. V. Lebedev-Stepanov, “Computer visualization of hydrodynamic flows within an evaporating liquid microdrop,” Nauch. Vizualiz., 2, No. 4, 72–75 (2010).Google Scholar
  13. 13.
    L. Yu. Barash, “Dependence of fluid flows in an evaporating sessile droplet on the characteristics of the substrate,” Int. J. Heat Mass Transf., 84, 419–426 (2015).CrossRefGoogle Scholar
  14. 14.
    S. A. Borodin, A. V. Volkov, and N. P. Kazanskii, “A device for the analysis of nano-roughnesses and contamination of a substrate from the dynamic state of a liquid droplet deposited on its surface,” Optich. Zh., 76, No. 7, 42–47 (2009).Google Scholar
  15. 15.
    P. S. Vasil’ev, L. S. Reva, S. L. Reva, et al., “Determination of evaporation time of a droplet boiling on a heating surface,” Vest. Tekhnol. Univ., 19, No. 5, 121–126 (2016).Google Scholar
  16. 16.
    I. N. Pavlov, Raskovskaya, and A. V. Tolkachev, “Structure of the micro-relief of the surface of a droplet evaporating from a rough substrate as one possible cause of hysteresis of the contact angle,” Zh. Eksper. Tekh. Fiz., 151, Iss. 4, 670–681 (2017).Google Scholar
  17. 17.
    I. N. Pavlov, I. L. Raskovskaya, and B. S. Rinkevichyus, “Establishing the surface profile of a liquid droplet based on layered laser probing,” Pisma Zh. Tekh. Fiz., 43, No. 13, 19–26 (2017).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. N. Pavlov
    • 1
  • I. L. Raskovskaya
    • 1
  • S. P. Yurkevichyus
    • 2
  1. 1.National Research University – Moscow Power Engineering Institute (MPEI)MoscowRussia
  2. 2.Research Institute – Federal Research Center for Projects Evaluation and Consulting ServicesMoscowRussia

Personalised recommendations