Advertisement

Measurement Techniques

, Volume 61, Issue 6, pp 579–587 | Cite as

Error Detection in Arithmetic-Logic Devices of Information-Measurement System Processors

  • A. A. Pavlov
  • A. N. Tsar’kov
  • D. A. Korsunskii
  • V. Z. Volkov
Article
  • 8 Downloads

A regular procedure is proposed for adaptation of an algebraic linear code for error detection in arithmetic-logic instruments of information-measurement systems. The regularities that define the relationships between arithmetic-logic operations and the values of the check bits of the linear code relative to these operations are revealed. It is shown that these regularities make it possible to formulate rules for obtaining the values of corrections to check bits of the code in order to detect single and double errors with minimal information redundancy and hardware and time costs.

Keywords

information-measurement system microprocessor microcontroller correcting algebraic linear code single and double errors information bits check bits algebraic operations task logical operations 

References

  1. 1.
    K. B. Klaassen, Foundations of Measurements. Electronic Methods and Instrumentation in Measurement Technology, Postmarket, Moscow (2000).Google Scholar
  2. 2.
    G. G. Rannev, Information-Measurement Techniques and Technologies, Vysshaya Shkola, Moscow (2001).Google Scholar
  3. 3.
    G. G. Rannev and A. P. Tarasenko, Measurement Methods and Instruments, Akademiya, Moscow (2004).Google Scholar
  4. 4.
    Yu. L. Mukha and I. Yu. Koroleva, Information-Measurement Systems, Volgogradskii GTU, Volgograd (2015).Google Scholar
  5. 5.
    E. V. Ostroverkhov, Microprocessor with an Integrated Module for Automation of Measurements of Electrical Values, http://storage.tusur.ru/riles/8849/EP, acc. 01.20.2018.
  6. 6.
    AVLG.468711.001-2005, Merkurii-Energouchet Automated Information-Measurement Systems for Control and Accounting of Energy Resources. Technical Specifications.Google Scholar
  7. 7.
    N. S. Shcherbakov, Reliability of Operation of Digital Devices, Mashinostroenie, Moscow (1989).Google Scholar
  8. 8.
    Hagbae Kim and Kang G. Shin, “Evaluation of fault tolerance latency from real-time application’s perspectives,” IEEE T. Comput., 49, No. 1, 55–64 (2000).CrossRefGoogle Scholar
  9. 9.
    K. Yu. Borisov, A. A. Pavlov, P. A. Pavlov, et al., “Efficient encoding of information for error detection in the information storage and transmission instruments of measurement instruments,” Izmer. Tekhn., No. 12, 22–25 (2011).Google Scholar
  10. 10.
    R. Naseer and J. Draper, “Parallel double error correcting code design to mitigate multi-bit upsets in SRAMs,” IEEE T. Device Mater. Rel., 6, 222–225 (2008).Google Scholar
  11. 11.
    A. A. Pavlov, P. A. Pavlov, N. A. Tsar’kov, and O. V. Khoruzhenko, “Functional code checking of errors in computer-aided measurement technology systems,” Izmer. Tekhn., No. 9, 3–5 (2009).Google Scholar
  12. 12.
    A. A. Pavlov, A. N. Tsar’kov, O. V. Khoruzhenko, and P. A. Pavlov, “A method of error checking in information storage and transmission instruments of automated systems of measurement instrument,” Izmer. Tekhn., No. 11, 21–25 (2010).Google Scholar
  13. 13.
    A. A. Pavlov, A. N. Tsar’kov, P. A. Pavlov, et al., “Detection of errors in the storage units of information-measurement systems,” Izmer. Tekhn., No. 10, 12–16 (2017).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. A. Pavlov
    • 1
  • A. N. Tsar’kov
    • 2
  • D. A. Korsunskii
    • 2
  • V. Z. Volkov
    • 1
  1. 1.Peter the Great Military Academy of Strategic Missile TroopsSerpukhovRussia
  2. 2.Institute of Engineering PhysicsSerpukhovRussia

Personalised recommendations