Measurement Techniques

, Volume 61, Issue 6, pp 566–571 | Cite as

Application of Optical Microresonators for Measuring the Concentration of Nanoparticles in Liquids

  • A. D. Ivanov
  • K. N. Min’kov
  • A. A. Samoilenko
  • D. D. Ruzhitskaya
  • G. G. Levin

We present the results of experimental research of primary measuring transducers based on optical microresonators. We study the process of collective interaction of nanoparticles suspended in the liquid with the surfaces of adsorption sensors.


sensor nanoparticles detection microresonators whispering gallery modes 


  1. 1.
    M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics, 7, No. 2, 168–240 (2015).ADSCrossRefGoogle Scholar
  2. 2.
    F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics, No. 1, 267–291 (2012).Google Scholar
  3. 3.
    G. C. Righini and S. Soria, “Biosensing by WGM microspherical resonators,” Sensors, 16, 905 (2016).CrossRefGoogle Scholar
  4. 4.
    A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express, 15, 6768–6773 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express, 16, No. 2, 1020–1028 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    S. Corbellini, C. Ramella, L. Yu, M. Pirola, and V. Fernicola, “Whispering gallery mode thermometry,” Sensors, 16, No. 1814, 13 (2016).Google Scholar
  7. 7.
    Q. Ma, L. Huang, Z. Guo, and T. Rossmann, “Spectral shift response of optical whispering-gallery modes due to water vapor adsorption and desorption,” Meas. Sci. Technol., 21, 7 (2010).Google Scholar
  8. 8.
    M. E. Erdem, A Novel Liquid Level Sensor Design Using Laser Optics Technology: PhD Dissertation, Istanbul Techn. Univ. (2011).Google Scholar
  9. 9.
    K. Qian, J. Tang, H. Guo., et al., “Under-coupling whispering gallery mode resonator applied to resonant micro-optic gyroscope,” Sensors, 17, No. 1, 100 (2017), DOI: Scholar
  10. 10.
    Y.-J. Chen, W. Xiang, J. Klucken, and F. Vollmer, “Tracking micro-optical resonances for identifying and sensing novel procaspase-3 protein marker released from cell cultures in response to toxins,” Nanotechnology, 27, No. 16, 164001 (2016), DOI: Scholar
  11. 11.
    M. E. Anderson, E. C. O’Brien, E. N. Grayek, et al., “The detection of Helicobacter hepaticus using whispering-gallery mode microcavity optical sensors,” Biosensors, No. 5, 562–576 (2015).CrossRefGoogle Scholar
  12. 12.
    F. Vollmer, I. Teraoka, and S. Arnold, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Amer., No. 20, 1937–1946 (2003).Google Scholar
  13. 13.
    J. Zhu, S. K. Ozdemir, Y.-F. Xiao, et al., “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics, 4, No. 1, 46–49 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    Y. Hu, L. Shao, S. Arnold, et al., “Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity,” Phys. Rev. A, 90, Iss. 4, 043847 (2014).Google Scholar
  15. 15.
    A. A. Samolenko, G. G. Levin, V. L. Lyaskovskii, et al., “Application of whispering-gallery-mode optical microcavities for detection of silver nanoparticles in an aqueous medium,” Optic. Spectroscop., 122, No. 6, 1002–1004 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    N. Leopold and B. Lendl, “A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride,” J. Phys. Chem. B, 107, 5729 (2003).CrossRefGoogle Scholar
  17. 17.
    A. Mazzei, S. Götzinger, L. S. Menezes, et al., “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett., 99, 5723–5727 (2007).CrossRefGoogle Scholar
  18. 18.
    D. Paramelle, A. Sadovoy, S. Gorelik, et al., “Rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra,” Analyst, 139, No. 19, 4855–4861 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    T. Erdey-Gruz, Transport Phenomena in Aqueous Solutions [Russian translation], Mir, Moscow (1976).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. D. Ivanov
    • 1
  • K. N. Min’kov
    • 1
    • 2
  • A. A. Samoilenko
    • 1
  • D. D. Ruzhitskaya
    • 3
  • G. G. Levin
    • 1
  1. 1.All-Russia Research Institute of Optophysical Measurements (VNIIOFI)MoscowRussia
  2. 2.Moscow Institute of Electronics and MathematicsNational Research University Higher School of Economics (MIEM HSE)MoscowRussia
  3. 3.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations