Advertisement

Measurement Techniques

, Volume 61, Issue 6, pp 540–545 | Cite as

Fast Algorithm for Choosing Kernel Function Blur Coefficients in a Nonparametric Probability Density Estimate

  • A. V. Lapko
  • V. A. Lapko
Article
  • 8 Downloads

A fast algorithm for choosing the blurring coefficients of kernel functions for a nonparametric probability density estimate is proposed, and its properties are investigated. The technique of interval estimation of the standard deviation of the nonparametric statistics under consideration is considered.

Keywords

nonparametric estimation of probability density choice of blurring coefficients estimation of mean square deviation of probability density estimation 

Notes

This study was supported by the Russian Foundation for Basic Research (Grant No. 18-01-00251).

References

  1. 1.
    A. V. Lapko and V. A. Lapko, Multilevel Non-Parametric Information Processing Systems, Sib-GAU, Krasnoyarsk (2013).Google Scholar
  2. 2.
    M. Rudemo, “Empirical choice of histogram and kernel density estimators,” Scand. J. Statist., No. 9, 65–78 (1982).Google Scholar
  3. 3.
    P. Hall, “Large-sample optimality of least squares cross-validation in density estimation,” Annals of Statistics, 11, 1156–1174 (1983).MathSciNetCrossRefGoogle Scholar
  4. 4.
    M. Jiang and S. B. Provost, “A hybrid bandwidth selection methodology for kernel density estimation,” J. Stat. Comput. Simulat., 84, No. 3, 614–627 (2014).MathSciNetCrossRefGoogle Scholar
  5. 5.
    S. Dutta, “Cross-validation revisited,” Communic. Stat. – Simulat. Comput., 45, No. 2, 472–490 (2016).MathSciNetCrossRefGoogle Scholar
  6. 6.
    N. B. Heidenreich, A. Schindler, and S. Sperlich, “Bandwidth selection for kernel density estimation: a review of fully automatic selectors,” Adv. Stat. Analysis, 97, No. 4, 403–433 (2013).MathSciNetCrossRefGoogle Scholar
  7. 7.
    A. V. Lapko and V. A. Lapko, “Analysis of optimization methods for nonparametric estimation of probability density with respect to the blur factor of kernel functions,” Izmer. Tekhn., No. 6, 3–8 (2017).Google Scholar
  8. 8.
    M. I. Borrajo, W. Gonzalez-Manteiga, and M. D. Martinez-Miranda, “Bandwidth selection for kernel density estimation with length-biased data,” J. Nonparam. Stat., 29, No. 3, 636–668 (2017).MathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Chen, “Optimal bandwidth selection for kernel density functionals estimation,” J. Probab. Statist., 2015, 1–21 (2015).MathSciNetCrossRefGoogle Scholar
  10. 10.
    S. J. Sheather, “Density Estimation,” Stat. Science, 19, No. 4, 588–597 (2004).MathSciNetCrossRefGoogle Scholar
  11. 11.
    B. W. Silverman, Density Estimation for Statistics and Data Analysis, Chapman and Hall, London (1986).CrossRefGoogle Scholar
  12. 12.
    V. C. Raykar and R. Duraiswami, “Fast optimal bandwidth selection for kernel density estimation,” 6th SIAM Int. Conf. on Data Mining (2006), pp. 524–528.Google Scholar
  13. 13.
    E. Parzen, “On estimation of a probability density function and mode,” Annals of Statistics, 33, No. 3, 1065–1076 (1962).MathSciNetCrossRefGoogle Scholar
  14. 14.
    L. Devroi and L. Dierfi , Nonparametric Density Estimation (L 1 -approach), Mir, Moscow (1988).Google Scholar
  15. 15.
    V. A. Epanechnikov, “Nonparametric estimation of multi-dimensional probability density,” Teor. Veroyatn. Primen., 14, No. 1, 156–161 (1969).MathSciNetzbMATHGoogle Scholar
  16. 16.
    A. V. Lapko and V. A. Lapko, “Regression estimate of the multidimensional probability density and its properties,” Optoelectr., Instrum. Data Proces., 5, No. 2, 148–153 (2014).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Computational Modeling, Siberian Branch of the Russian Academy of SciencesKrasnoyarskRussia
  2. 2.Reshetnev Siberian State University of Science and TechnologyKrasnoyarskRussia

Personalised recommendations