Advertisement

Measurement Techniques

, Volume 61, Issue 4, pp 321–326 | Cite as

GET 59–2016, State Primary Standard of Unit of Thermal Conductivity and Unit of Thermal Resistance

  • N. A. Sokolov
  • A. N. Sokolov
  • N. V. Churilina
STATE STANDARDS
  • 12 Downloads

Features and metrological characteristics of State Primary Standard GET 59–2016 of the unit of thermal conductivity and unit of thermal resistance are considered. The basic results of the three international comparisons CCT-S2, 495/RU/10a, and 549/RU/12a are presented.

Keywords

State Primary Standard thermal conductivity thermal resistance metrological characteristics international comparisons 

References

  1. 1.
    D. A. Tatarashvili, O. A. Sergeev, and Yu. A. Chistiyakov, “State Primary Standard of unit of thermal conductivity of solids,” Izmer. Tekhn., No. 4, 18–21 (1975).Google Scholar
  2. 2.
    GOST 8.140–75, GSI. State Primary Standard and State Measurement Chain for Instruments for the Measurement of the Thermal Conductivity of Solids in the Range of Temperatures 90500 K.Google Scholar
  3. 3.
    GOST 8.140–82, GSI. State Primary Standard and State Measurement Chain for Instruments for the Measurement of the Thermal Conductivity of Solids from 0.1 to 5 W/(m·K) in the Range of Temperatures 90500 K and from 5 to 20 W/(m·K) in the Range of Temperatures 3001100 K.Google Scholar
  4. 4.
    N. A. Sokolov, Patent 2276781 RF, “A method of determining the thermal conductivity of a synthetic material,” Izobret. Polezn. Modeli, No. 14 (2006).Google Scholar
  5. 5.
    N. A. Sokolov, “A new class of devices: multi-valued measures of thermal conductivity,” Izmer. Tekhn., No. 4, 50–52 (2006).Google Scholar
  6. 6.
    N. A. Sokolov, Metrological Assurance of Energy Conservation (measurement of thermal conductivity and related quantities), MIO, St. Petersburg (2005).Google Scholar
  7. 7.
    N. A. Sokolov, “Computer simulation of the measurement of thermal conductivity,” Izmer. Tekhn., No. 4, 44–46 (2007).Google Scholar
  8. 8.
    N. A. Sokolov, Creation of an Equipment Complex of the State Primary Standard of the Unit of Thermal Conductivity and System for the Transmission of the Unit in the Range from 0.02 to 0.2 W/(m·K): Auth. Abstr. Dissert. Doct. Techn. Sci., St. Petersburg (2006).Google Scholar
  9. 9.
    GOST 8.140–2009, GSI. State Measurement Chain for Instruments for the Measurement of the Thermal Conductivity of Solids in the Range from 0.02 to 20 W/(m·K) at a Temperature from 90 to 1100 K.Google Scholar
  10. 10.
    GOST 7076–99. Construction Materials and Articles. A Method of Determining Thermal Conductivity and Thermal Resistance under Fixed Thermal Conditions.Google Scholar
  11. 11.
    N. A. Sokolov, Patent 2343466 RF, “A method of determining the thermal conductivity of synthetic materials,” Izobret. Polezn. Modeli, No. 1 (2009).Google Scholar
  12. 12.
    N. A. Sokolov and A. N. Sokolov, “Multi-valued measures of thermal conductivity for the range 20–500 W/(m·K),” Izmer. Tekhn., No. 7, 43–46 (2009).Google Scholar
  13. 13.
    N. A. Sokolov and A. N. Sokolov, Patent 2479040 RF, “A method of determining the thermal conductivity of a synthetic material,” Izobret. Polezn. Modeli, No. 10 (2013).Google Scholar
  14. 14.
    N. A. Sokolov, Development and Investigation of Methods and Instruments for Increasing the Precision of Measurement of Thermal Conductivity in the Range from 0.02 to 3 W/(m·K), Thermal Resistance in the Range from 0.005 to 1.5·m2·K/W, and Heat Transfer Resistance in the Range 0.02 to 6 m2·K/W: Auth. Abstr. Dissert. Cand. Techn. Sci., St. Petersburg (2011).Google Scholar
  15. 15.
    GOST 8.061–80, GSI. State Measurement Chains. Content and Construction.Google Scholar
  16. 16.
    B. Hay, L. Cortes, B. Doucey, et al., International Comparison on Thermal Conductivity Measurements of Insulating Materials by Guarded Hotplate, DEStech Publications, USA (2009), pp. 79–87.Google Scholar
  17. 17.
    N. A. Sokolov and A. N. Sokolov, “Creation of new instruments and a system of metrological assurance of measurements of the thermal conductivity of effective thermal insulators,” Pribory, No. 7, 2–9 (2010).Google Scholar
  18. 18.
    B. Hay, L. Cortes, B. Doucey, et al., “International comparison on thermal conductivity measurements of insulating materials by guarded hotplates–preliminary results,” Proc. 30th Int. Thermal Conductivity Conf. and 18th Int. Thermal Expansion Symp. (2010), Vol. 18, pp. 378–385.Google Scholar
  19. 19.
    B. Hay, R. Zarr, C. Stacey, et al., “Analysis of thermal conductivity measurement data from international comparison of national laboratories,” Int. J. Thermophys., 34, Iss. 5, 737–762 (2013), DOI  https://doi.org/10.1007/s10765-012-12225-x.
  20. 20.
    N. A. Sokolov, V. N. Mikhalchenko, P. V. Krivonos, et al., “International comparison on thermal conductivity measurements of thermal insulators at a temperature of 10 to 40°C,” Energy Conservation in Heat and Gas Supply Systems: Proc. 4th Sci. Pract. Conf., St. Petersburg (2013), pp. 8–12.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. A. Sokolov
    • 1
  • A. N. Sokolov
    • 1
  • N. V. Churilina
    • 1
  1. 1.Mendeleev All-Russia Research Institute of Metrology (VNIIM)St. PetersburgRussia

Personalised recommendations