, Volume 63, Issue 5–6, pp 487–495 | Cite as

Study of the Effect of Composition and Thermal Deformation Treatment on Properties of Ferritic Steels Microalloyed with Titanium and Niobium. Part 1. Microstructure Characteristics

  • A. V. KoldaevEmail author
  • A. I. Zaitsev
  • I. A. Krasnyanskaya
  • D. L. D’yakonov

The effect of composition and thermal deformation processing (finishing temperature of rolling and coiling, cooling rate after rolling) parameters on the mechanical properties and structure of advanced Ti, Mo micro-alloyed structural (automobile sheet) ferritic steels is studied. It is established that the strength characteristics of steel increase regularly with increasing Ti content within appropriate limits and additional microalloying with molybdenum. The resultant structural state is primarily determined by the cooling rate after steel hot rolling. At relatively low values of 10–15 °C/sec polygonal ferrite is formed, and on increasing up to 30 °C/sec formation of a high dislocation acicular ferrite is observed. The expediency of reducing carbon content to 0.04–0.06 wt.% is demonstrated.


ferritic steels composition microstructure thermal deformation processing strength ductility precipitation hardening acicular ferrite 


  1. 1.
    K. Hasegawa, K. Kawamura, T. Urabe, and Y. Hosoya, “Effects of microstructure on stretch-flange-formability of 980 MPa grade cold-rolled ultra-high strength steel,” ISIJ Int., 44, No. 3, 603–609 (2004).CrossRefGoogle Scholar
  2. 2.
    K. Seto, Y. Funakawa, and S. Kaneko, “Hot rolling high-strength steels for suspension and chassis parts NANOHITEN and BTH steels,” JFE Technical Report, No. 10, 19–25 (2007).Google Scholar
  3. 3.
    N. G. Shaposhnikov, A. V. Koldaev, A. I. Zaitsev, et al., “Features of titanium carbide precipitation in low carbon high-strength steels microalloyed with titanium and molybdenum,” Metallurgist, 60, No. 7-8, 810–816 (2016).CrossRefGoogle Scholar
  4. 4.
    Z. Zhang, Q. Yong, X. Sun, et al., “Effect of Mo addition on the precipitation behavior of carbide in Nb-bearing HSLA steel”, in: HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015. Conf. Pro. Chinese Society for Metals and Chinese Academy of Engineering (2016), pp. 203–210.Google Scholar
  5. 5.
    J. H. Jang, C. H. Lee, Y. Yu. Heo, and D. W. Suh, “Stability of (Ti,M) C (M = Nb, V, Mo and W) carbide in steels using firstprinciples calculations,” Acta Mater., 60, 208–217 (2012).Google Scholar
  6. 6.
    F. Z. Bu, X. M. Wang, S. W. Yang, C. J. Shang, and R. D. K. Misra, “Contribution of interphase precipitation on yield strength in thermomechanically simulated Ti–Nb and Ti–Nb–Mo microalloyed steels,” Materials Science & Engineering A, 620, 22–29 (2014).CrossRefGoogle Scholar
  7. 7.
    A. I. Zaitsev, A. V. Koldaev, B. M. Mogutnov, et al., “Study of the role of molybdenum in the microalloying system for highstrength ferritic automobile sheet steels,” Probl. Chern. Met. Materialoved., No. 3, 65–71 (2018).Google Scholar
  8. 8.
    A. J. De Ardo, “Niobium in modern steels,” Int. Materials Reviews, 48, No. 6, 371–402 (2003).CrossRefGoogle Scholar
  9. 9.
    A. I. Zaitsev, “Prospective directions for development of metallurgy and materials science of steel,” Pure and Applied Chemistry, 89, No. 10, 1553–1565 (2017).CrossRefGoogle Scholar
  10. 10.
    Z. Wang, H. Zhang, C. Guo, et al., “Effect of molybdenum addition on the precipitation of carbides in the austenite matrix of titanium micro-alloyed steels,” J. Mater Sci., 51, 4996–5007 (2016).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. V. Koldaev
    • 1
    Email author
  • A. I. Zaitsev
    • 1
  • I. A. Krasnyanskaya
    • 1
  • D. L. D’yakonov
    • 1
  1. 1.FGUP I. P. Bardin TsNIIchermetMoscowRussia

Personalised recommendations