pp 1–10 | Cite as

Study of Transient and Steady-State Stages During Two-High and Three-High Screw Rolling of a 12Kh18N10T Steel Workpiece

  • M. M. SkripalenkoEmail author
  • B. A. Romantsev
  • L. M. Kaputkina
  • S. P. Galkin
  • M. N. Skripalenko
  • V. V. Cheverikin

Test rolling is performed for austenitic steel 12Kh18N10T workpieces in two-high and three-high screw rolling mills. Differences are determined for the nature of change in hardness and structural parameters (grain size and grain size anisotropy coefficient in axial and transverse sections) in transient and steady-state screw rolling stages conducted by two schemes (two-high and three-high). In the steady-state screw rolling stage compared with the transient stage there is a reduction in the range of grain size and hardness values with the volume of a workpiece. It is established that the distribution of inclusions in a diametric longitudinal section close to the end of a workpiece after deformation in both mills is comparable with the rolling angle direction close to the roll feed angle.


two-high screw rolling three-high screw rolling austenitic steel steady-state screw rolling transient screw rolling grain size hardness grain size anisotropy 


  1. 1.
    S. P. Galkin, “Theory and technology of steady-state workpiece and bar rolling of low-ductility steels and alloys,” Diss. Doct. Techn. Sci., Moscow (1998).Google Scholar
  2. 2.
    E. V. Naydenkin, I. V. Ratochka, I. P. Mishin, and O. N. Lykova, “Evolution of the structural-phase state of a VT22 titanium alloy during helical rolling and subsequent aging,” Russian Physics Journal, 58, No. 8, 1068–1073 (2015).Google Scholar
  3. 3.
    A. S. Smirnova, L. S. Derevyagina, A. I. Gordienko, and Yu. I. Pochivalov, “Modification of the structure if low-carbon pipe steel by transverse screw rolling and an increase in strength properties and cold resistance,” FMM, 119, No. 16, 89–98 (2018).Google Scholar
  4. 4.
    M. Diez, H. Kim, V. Serebryany, et al., “Improving the mechanical properties of pure magnesium by three-roll planetary milling,” Mat. Sci. and Eng. A, 612, 287–292 (2014).CrossRefGoogle Scholar
  5. 5.
    A. Stefanik, P. Szota, S. Mróz, et al., “Properties of the AZ31 magnesium alloy round bars obtained in different rolling processes,” Archives of Metallurgy and Materials, 60, No. 4, 3001–3006 (2015).Google Scholar
  6. 6.
    I. V. Ratochka, I. P. Mishin, O. N. Lykova, et al., “Evolution of the structure and mechanical properties of titanium alloy VT22 with high-temperature deformation,” Izv. Vyssh. Uchebn, Zaved., 59, 70–74 (2016).Google Scholar
  7. 7.
    B. A. Romantsev, A. V. Goncharuk, N. M. Vavilkin, and S. V. Samusev, Pipe Manufacture [in Russian], ID MISiS, Moscow (2011).Google Scholar
  8. 8.
    B. A. Romantsev, “Hollow shaped workpieces with improved precision, machine technology and construction,” Diss. Doc. Techn. Sci., Moscow (1993).Google Scholar
  9. 9.
    M. M. Skripalenko, V. E. Bazhenov, B. A. Romantsev, et al., “Mannesmann piercing of ingots by plugs of different shapes,” Mat. Sci. and Tech., 32, No. 16, 1712–1720 (2016).CrossRefGoogle Scholar
  10. 10.
    Z. Zhang, D. Liu, Y. Yang, et al., “Explorative study of rotary tube piercing process for producing titanium alloy thick-walled tubes with bi-modal microstructure,” Archives of Civil and Mechanical Engineering, 18, No. 4, 1451–1463 (2018).Google Scholar
  11. 11.
    C. Bunte and M. Gomez, “Caracterización de semielaborados de aleaciones de titanio procesadas por extrusión y laminación perforación (proceso Mannesmann),” Revista Materia, 20, No. 3, 636–645 (2015).Google Scholar
  12. 12.
    S. P. Galkin, “Trajectory of deformed metal as basis for controlling the radial-shift and screw rolling,” Stal’, No. 7, 63–66 (2004).Google Scholar
  13. 13.
    B. A. Romantsev, S. P. Galkin, V. K. Mikhajlov, et al., “Bar micromill,” Stal’, No. 2, 40–42 (1995).Google Scholar
  14. 14.
    N. Lopatin, “Effect of hot rolling by screw mill on microstructure of a Ti−6Al−4V titanium alloy,” Int. J. of Material Forming, 6, No. 4, 459–465 (2012).CrossRefGoogle Scholar
  15. 15.
    N. Lopatin, G. Salishchev, and S. Galkin, “Mathematical modeling of radial-shear rolling of the VT6 titanium alloy under conditions of formation of a globular structure,” Russian J. NonFerrous Metals, 52, No. 5, 442–447 (2011).CrossRefGoogle Scholar
  16. 16.
    V. I. Betekhtin, Y. R. Kolobov, V. Sklenicka, et al., “Effect of a defect structure on the static and long-term strength of submicro-crystalline VT1–0 titanium fabricated by plastic deformation during screw and lengthwise rolling,” Technical Physics, 60, No. 1, 66–71 (2015).Google Scholar
  17. 17.
    F. Yabo, C. Jing, and C. Zhiqiang, “Cracks of Cu–Cr–Zr alloy bars under planetary rolling,” Rare Metal Materials and Engineering, 44, No. 3, 567–570 (2015).Google Scholar
  18. 18.
    Y. L. Wang, Y. Liu, J. T. Wang, and F. S. Tian, “Microstructure and properties of T2 copper tube produced by severe hot rolling,” Materials Science Forum, 667–669, 193–198 (2010).CrossRefGoogle Scholar
  19. 19.
    Y. Li Wang, A. Molotnikov, M. Diez, et al., “Gradient structure produced by three roll planetary milling: Numerical simulation and microstructural observations,” Mat. Sci. and Eng. A, 639, 165–172 (2015).CrossRefGoogle Scholar
  20. 20.
    A. Bogatov and E. Panov, “Effect of stress-strain state during helical rolling on metal and alloy structure and ductility,” Metallurgist, 57, No. 5/6, 434–441 (2013).CrossRefGoogle Scholar
  21. 21.
    X. Ding, Y. Shuang, Q. Liuand, and C. Zhao, “New rotary piercing process for an AZ31 magnesium alloy seamless tube,” Materials Science and Technology, 34, No. 4, 408–418 (2017).Google Scholar
  22. 22.
    B. A. Romantsev, I. N. Potapov, A. V. Goncharuk, and V. A. Popov, Preparation of Hollow Shaped Workpieces [in Russian], NPO Inform. Tekhn. Ekon. Issled., Moscow (1992).Google Scholar
  23. 23.
    A. N. Nikulin, Screw Rolling, Stresses and Strains [in Russian], Metallurgizdat, Moscow (2015).Google Scholar
  24. 24.
    M. M. Skripalenko, B. A. Romantsev, S. P. Galkin, et al., “Prediction of the fracture of metal in the process of screw rolling in a two-roll mill,” Metallurgist, 61, No. 11/12, 925–933 (2018).CrossRefGoogle Scholar
  25. 25.
    M. M. Skripalenko, T. B. Huy, J. S. Her, et al., “Prediction of deformability of workpieces during screw rolling based on computer modeling and experimental evaluation,” Proc. IX Eurasian Sci, Pract. Conf. “Strength of inhomogeneous structures” (2018).Google Scholar
  26. 26.
    M. M. Skripalenko, B. A. Romantsev, S. P. Galkin, et al., “Computer modeling of screw rolling with the aim of predicting workpiece failure,” Proc. VII Internat. Conf. “Deformation and failure of materials and anano-materials” (2017).Google Scholar
  27. 27.
    B. V. Karpov, M. M. Skripalenko, S. P. Galkin, et al., “Studying the nonstationary stages of screw rolling of billets with profiled ends,” Metallurgist, 61, No. 3, 257–264 (2017).Google Scholar
  28. 28.
    S. Z. Li, W. H. Meng, L. W. Hu, and B. Ding, “Research on the tendency of inner crack during 3-roll skew rolling process of round billets,” Advanced Materials Research, 145, 238–242 (2011).CrossRefGoogle Scholar
  29. 29.
    [Electronic source]. URL: (Access date: 09.19.2018)
  30. 30.
    M. M. Skripalenko, S. P. Galkin, J. S. Her, et al., “Prediction of the probability of failure during radial shaer rolling of continuously cast copper billets based on computer modeling,” Metallurg, No. 9, 7–12 (2018).Google Scholar
  31. 31.
    Tukey and J. Wilder, Exploratory Data Analysis, Reading, Mass.: Addison-Wesley (1992).Google Scholar
  32. 32.
    М. Ékspertiza, “Thixomet — image analysis system with a laboratory microscope [Electronic source]. URL: date: 09.23.2018)
  33. 33.
    A. B. Naizabekov, S. N. Lezhnev, A. S. Arbuz, and E. A. Panin, “Obtaining of long-length rods with ultrafine-grained structure by the radial-shear rolling,” IOP Conference Series: Mat. Sc. and Eng., 461, 1–5 (2018).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. M. Skripalenko
    • 1
    Email author
  • B. A. Romantsev
    • 1
  • L. M. Kaputkina
    • 1
  • S. P. Galkin
    • 1
  • M. N. Skripalenko
    • 1
  • V. V. Cheverikin
    • 1
  1. 1.National Research technological University, MISiSMoscowRussia

Personalised recommendations