Increase in Electrolyzer Energy Efficiency with a Self-Baking Anode

  • S. G. ShakhraiEmail author
  • A. A. Dekterev
  • A. P. Skuratov
  • A. V. Minakov
  • V. Yu. Bazhin

A brief analysis is provided for the energy consumption to overcome the resistance of a gas layer generated during electrolysis beneath the aluminum electrolytic cell anode, and basic concepts are provided for reducing the volume of a gas layer beneath the anode. A technical solution is proposed providing separation of the self-baking anode into individual units in a common anode housing that improves significantly not only energy, but also ecological parameters of the aluminum electrolyzer. Mathematical modeling is provided for anode gas behavior under a monoblock and a self-baking anode block. On the basis of analyzing the data obtained it is revealed that the use of a block anode reduces the electrolyzer energy required in a cell by 3–5%, improves cell productivity by 10–12%, and reduces by half the number of burners in used in the electrolysis vessel.


aluminum electrolysis self-baking anode separation in anode blocks gas layer electricity consumption 


  1. 1.
    É. A. Yanko, Aluminum Production. Manual for Workshop Masters and Workers of Aluminum Plant Electrolyzers Workshops [in Russian], Izd. St. Petersburg Univ. (2007).Google Scholar
  2. 2.
    Z. Yiwen, Z. Jiemin, Ya. Jianhong, et al., “Simulation of anode bubble: volume of fluid method,” Light Metals, 783–788 (2014).Google Scholar
  3. 3.
    T. M. Hyde and B. J. Welch, “The gas under anodes in aluminium smelting cells, Part I: measuring and modelling bubble resistance under horizontally oriented electrodes,” Light Metals, 333–340 (1997).Google Scholar
  4. 4.
    M. M. Vetyukov, A. M. Tsyplakov, and S. N. Shkol’nikov, Aluminum and Magnesium Electrometallurgy [in Russian], Metallurgiya, Moscow (1987).Google Scholar
  5. 5.
    E. Yu. Radionov, Yu. V. Bogdanov, A. V. Knizhnik, et al., “Use of preliminarily baked anodes with grooves in aluminum electrolyzers for improving technical and economic indices,” Proc. XIII Internat. Conf. “Aluminum Siberia – 2007”, Krasnoyarsk (2007).Google Scholar
  6. 6.
    V. Kh. Mann, Buzunov, N. N. Pitertsev, et al., “Reduction in electrical energy consumption during manufacture of aluminum in existing electrolyzer housings of OK RUSAL Plants,” Proc. Internat. Conf. “Iskoba” and XIX Internat. Conf. “Aluminum Siberia”, Krasnoyarsk (2013).Google Scholar
  7. 7.
    S. Si, Improvement of Electrolyzer Productivity and Development of Energy Saving Technology in China, Proc. IV Internat. Conf.Nonferrous metals,” Krasnoyarsk (2012).Google Scholar
  8. 8.
    L. Xiaojun, Sh. Yajing, L. Jie, et al., “Characterization on bubble behavior in aluminum reduction cells,” Light Metals, 347–352 (2016).Google Scholar
  9. 9.
    V. N. Ryaguzov, Inventor’s Cert. 313897 (USSR) USSRР, С25С3/22, С25С3/12, Method for separating gases from beneath an aluminum electrolyzer self-baking anode hearth, No. 1360714/22-1; Claim 09.10.1969; Publ. 09.07.1971. Bull. No. 27.Google Scholar
  10. 10.
    P. S. Saakyan and M. M. Anababyan, Inventor’s Cert. 124627 USSR, С25С3/14, Unit for continuous and semi-continuous supply of alumina to electrolyte, No. 624616/22; Claim 04.08.1959; Publ. In Bull. No. 23 (1959).Google Scholar
  11. 11.
    S. G. Shakhrai, P. V. Polyakov, A. V. Belyanin, et al., RF Patent 2542180 РФ, МПК С25С3/06. Device for extracting gases from beneath a self-baking anode, Claimant and patent holder Federal and State Autonomic Education Establishment for Higher Professional Education “Siberian Federal University” No. 2013151258/02; Claim 11.18.2013; Bubl. 02.20.2015; Bull. No. 5.Google Scholar
  12. 12.
    Knut Arne Peulsen, RF Patent 2121014, МПК6 С25С3/06, Electrolyzer with self-baking anode, Claimant and Petent Holder Norsk Hydro A. S., No. 95100760/02; Claim 01.06.1995; Publ. 10.27.1998.Google Scholar
  13. 13.
    A. I. Begunov, RF Patent 2186881, МПК7 С25С3/12, Electrolyzer for obtaining aluminum with side current supply, Claimant and Patent Holder A. I. Begunov, No. 2000128961/02; Claim 11.20.00; Publ. 08.10.02.Google Scholar
  14. 14.
    A. I. Begunov, RF Patent 2187581, МПК7 С25С3/06, Electrolyzer for obtaining aluminum, Claimant and Patent Holder A. I. Begunov, No. 2000120072/02; Claim 07.27.00; Publ. 08.20.02.Google Scholar
  15. 15.
    Alton T. Tabereaux and Xiangwen Wang, “In-situ formation of slots in Søderberg anodes,” Light Metals, 815–820 (2015).Google Scholar
  16. 16.
    S. G. Shakhrai, A. A. Dekterev, and A. P. Skuratov, “Electrolyzer for obtaining aluminum,” Claim for RF patent No. 2017123473 of 07.03.2017.Google Scholar
  17. 17.
    A. V. Minakov, “Numerical algorithm for moving-boundary fluid dynamics problems and its testing,” Comput. Math. Math. Phys., 54, 1560–1570 (2014).CrossRefGoogle Scholar
  18. 18.
    A. V. Minakov, M. V. Pervukhin, D. V. Platonov, and M. Y. Khatsayuk, “Mathematical model and numerical simulation of aluminum casting and solidification in magnetic fields with allowance for free surface dynamics,” Comput. Math. Math. Phys., 55, No. 12, 2066–2079 (2015).CrossRefGoogle Scholar
  19. 19.
    Z. Yiwen, Z. Jiemin, Y. Jianhong, L. Wangxing, and C. Shouhui, “Simulation of anode bubble: volume of fluid method,” Light Metals, 783–788 (2014).Google Scholar
  20. 20.
    Meijia Sun, Baokuan Li, Linmin Li, et al, “Anode on gas bubble behavior in aluminum reduction cell,” Metallurgical and Materials Trans, B256–264 (2017).Google Scholar
  21. 21.
    J. O. Hinze, Turbulence, McGraw-Hill Publishing Co., New York (1975).Google Scholar
  22. 22.
    F. R. Menter, “Two equation eddy viscosity turbulence models for engineering applications,” AIAA J., 32, No. 8, 1598–1605 (1994).CrossRefGoogle Scholar
  23. 23.
    F. R. Menter, “Review of the SST turbulence model experience from an industrial perspective,” Int. J. Comput. Fluid Dynamics, 23, No. 4 (2009).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. G. Shakhrai
    • 1
    Email author
  • A. A. Dekterev
    • 1
    • 2
  • A. P. Skuratov
    • 1
  • A. V. Minakov
    • 1
    • 2
  • V. Yu. Bazhin
    • 3
  1. 1.Institute of Nonferrous Metals and Materials Science of the Siberian Federal UniversityKrasnoyarskRussia
  2. 2.Institute of Thermal Physics, Siberian Section, Russian Academy of SciencesNovosibirskRussia
  3. 3.St. Petersburg Mining UniversitySt. PetersburgRussia

Personalised recommendations