Advertisement

Metallurgist

, Volume 62, Issue 5–6, pp 470–475 | Cite as

Microstructure and Mechanical Properties of Objects Prepared by Selective Laser Melting of AKD12 Powder

  • A. S. Fefelov
  • A. G. Merkushev
  • O. A. Chikova
  • A. B. Finkel’shtein
Article

The morphology and elemental composition of Al–12% Si powder grade AKD12 of three fractions are studied. Powder is prepared in an original molten metal gas spraying unit UR-9 in a high-purity nitrogen atmosphere. Results are provided for measurement of mechanical properties, a study of outer surface morphology and the failure surface of objects prepared by selective laser melting from AKD12 powder fraction less than 45 μm. It is shown that the mechanical properties of these objects surpass these indices for analogs produced overseas, i.e., ultimate strength σu = 245 MPa with relative elongation δ = 12%.

Keywords

selective laser melting powder metallurgy aluminum alloy microstructure chemical composition mechanical properties 

References

  1. 1.
    E. O. Olakanmi, R. F. Cochrane, and K. W. Dalgarn, “A review on selective laser sintering/melting (SLS/SLM) of aluminum alloy powders: Processing, microstructure, and properties,” Progr. in Mater. Sci., 74, 401–407 (2015).CrossRefGoogle Scholar
  2. 2.
    B. Berman, “3-D printing: The new industrial revolution,” Business Horizons, 55, 155–162 (2012).CrossRefGoogle Scholar
  3. 3.
    X. P. Li, X. J. Wanga, M. Saunders, et al., “A selective laser melting and solution heat treatment refined Al–12 Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility,” Acta Mater., 95, 74–82 (2015).CrossRefGoogle Scholar
  4. 4.
    K. G. Prashanth, S. Scudino, H. J. Klauss, et al., “Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment,” Mater. Sci. & Eng. A, 590, 153–160 (2014).CrossRefGoogle Scholar
  5. 5.
    N. Kang, P. Coddet, L. Dembinski, et al., “Microstructure and strength analysis of eutectic Al–Si alloy in-situ manufactured using selective laser melting from elemental powder mixture,” J. Alloys and Compounds, 691, 316–322 (2017).CrossRefGoogle Scholar
  6. 6.
    J. Suryawanshi, K. G. Prashanth, S. Scudino, et al., “Simultaneous enhancements of strength and toughness in an Al–12 Si alloy synthesized using selective laser melting,” Acta Mater., 115, 285–294 (2016).CrossRefGoogle Scholar
  7. 7.
    I. Maskery, N. T. Aboulkhair N.T., A. O. Aremu, et al., “A mechanical property evaluation of graded density Al–Si10–Mg lattice structures manufactured by selective laser melting,” Mater. Sci. & Eng. A, 670, 264–274 (2016).CrossRefGoogle Scholar
  8. 8.
    A. M. Samuel, G. H. Garza-Elizondo, H. W. Doty, and F. H. Samuel, “Role of modification and melt thermal treatment processes on the microstructure and tensile properties of Al–Si alloys,” Mater. & Design, 80, 99–108 (2015).CrossRefGoogle Scholar
  9. 9.
    E. O. Olakanmi, “Selective laser sintering/melting (SLS/SLM) of pure Al, Al–Mg, and Al–Si powders: Effect of processing conditions and powder properties,” J. Mater. Processing Technology, 213, No. 8, 1387–1405 (2013).CrossRefGoogle Scholar
  10. 10.
    S. A. Khairallah, A. T. Anderson, A. Rubenchik, and W. E. King, “Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones,” Acta Mater., 108, 36–45 (2016).CrossRefGoogle Scholar
  11. 11.
    M. Hoch and H. L. Johnston, “Formation, stability and crystal structure of the solid aluminum suboxides: Al2O and AlO,” J. Amer. Chem. Soc., 76, No. 9, 2560–2561 (1954).CrossRefGoogle Scholar
  12. 12.
    E. L. Furman, A. V. Chechulin, A. B. Frankel’stein, and S. P. Kazantsev, “Surface tension of cast aluminum alloys and wetting by them of inorganic pore-forming fillers,” Rasplavy, No. 3-4, 27–31 (1995).Google Scholar
  13. 13.
    M. Calvo-Dahlborg, P. S. Popel, M. J. Kramer, et al., “Superheat-dependent microstructure of molten Al–Si alloys of different compositions studied by small angle neutron scattering,” J. Alloys and Compounds, 550, 9–22 (2013).CrossRefGoogle Scholar
  14. 14.
    D. K. Lykasov and O. A. Chikova, “Optimization of alloying technology for alloy 2124 with manganese on the basis of studying the connection of structure and properties of liquid and cast metal,” Rasplavy, No. 1, 31–39 (2009).Google Scholar
  15. 15.
    P. S. Popel’, O. A. Chikova, and I. G. brodova, “Possibility of action on inherited micro-inhomogeneity of melts,” Metrallurg. Mashinostr., No. 2, 12–15 (2010).Google Scholar
  16. 16.
    O. A. Chikova, K. V. Nikitin, O. P. Moskovskikh, and V. S. Tsepelev, “Viscosity end electrical conductivity of liquid hypereutectic alloys Al–Si,” Acta Metallurgica Slovaca, 22, No. 3, 153–163 (2016).CrossRefGoogle Scholar
  17. 17.
    H. Choi and X Li, “Refinement of primary Si and modification of eutectic Si for enhanced ductility of hypereutectic Al–20Si–4.5Cu alloy with addition of Al2O3 nanoparticles,” J. Mater. Sci., 47, No. 7, 3096–3102 (2012).CrossRefGoogle Scholar
  18. 18.
    H. Cai, W. C. Sun, J. M. Zhang, and P. H. Cai, “Microstructural control of Al/Si composites by area-selectively liquid-phase-sintering method,” Mater. Sci. Forum, 809/810, 459–463 (2015).CrossRefGoogle Scholar
  19. 19.
    A. V. Kropotin, S. A. Sergeev, A. B. Finkel’stein, and O. A. Chikova, RF Patent 2607016, МPК С22С1/10. Method for Preparing Cast Composite Material, Claim 07.01.2014, Publ. 01.10.2017. Bull. No. 1.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. S. Fefelov
    • 1
  • A. G. Merkushev
    • 1
  • O. A. Chikova
    • 1
  • A. B. Finkel’shtein
    • 1
  1. 1.FGAOU VO B. N. El’tsin Ural Federal UniversityEkaterinburgRussia

Personalised recommendations