Metallurgist

pp 1–12 | Cite as

Flow Characterization and Inclusions Removal in a Slab Tundish Equipped with Bottom Argon Gas Feeding

  • C. E. Aguilar-Rodriguez
  • J. A. Ramos-Banderas
  • E. Torres-Alonso
  • G. Solorio-Diaz
  • C. A. Hernández-Bocanegra
Article

The fluid dynamics of a straight tundish was studied when Ar-gas was fed through the bottom, using mathematical simulation. Flow rates of 15 and 40 liters/min of argon in three locations into the tundish – near input steel, center, and near output steel – were analyzed. A stochastic model was employed for determining statistically the particle amount (emulating alumina particles) in the inclusions removal. From these calculations and those of the Residence Time Distribution (RTD) curves, we found a direct relationship to improve steel quality. Specifically, removal of the smaller nonmetallic inclusions was significantly enhanced for cases with the lowest dead volume fraction; they correspond to those of the highest averaged residence time. Therefore, it was found that it is even possible to reduce argon consumption and still obtain good results of steel cleanness.

Keywords

tundish inclusions removal gas injection 

Notes

Acknowledgements

The authors give thanks to CONACyT, DGEST, ITM, FIM-UMSNH and CÁTEDRAS CONACyT for their continuous support.

References

  1. 1.
    I. Tsubokura, D. Sommerville, and A. McLean, “Factors influencing the effectiveness of tundish metallurgy,” Iron Steelmaker, 12, No. 5, 58–62 (1985).Google Scholar
  2. 2.
    C. Marique, A. Dony, and J. Mahieu, “The bubbling of inert gas into the tundish – a means to improve steel cleanliness,” Iron Steelmaker, 17, No. 9, 15–16 (1990).Google Scholar
  3. 3.
    D. Mazumdar and R. Guthrie, “The physical and mathematical modelling of continuos casting tundish system,” ISIJ Int., 39, No. 6, 524–547 (1999).CrossRefGoogle Scholar
  4. 4.
    A. Ramos-Banderas, R. D. Morales, L. Garcia-Demedices, and M. Diaz-Cruz, “Mathematical simulation and modeling of steel flow with gas bubbling in trough type tundishes,” ISIJ Int., 43, No. 5 653–662 (2003).CrossRefGoogle Scholar
  5. 5.
    A. Ramos-Banderas, R. Morales, J. de J. Barreto, and G. Solorio, “Modelling study of inclusions removal by bubble flotation in the tundish,” Steel Res. Int., 77, No. 5, 325–335 (2006).Google Scholar
  6. 6.
    D. S. Kumar, T. Rajendra, R. Prasad, et al., “Forced flotation of inclusions in tundish,” Ironmak. Steelmak., 36, No. 6, 470–475 (2009).CrossRefGoogle Scholar
  7. 7.
    A. Cwudzinski, “Numerical simulation of steel flow through a one strand slab tundish with steel flow control devices,” Can. Metall. Q., 49, No. 3, 63–72 (2010).CrossRefGoogle Scholar
  8. 8.
    J. Méndez, C. Cicutti, A. Martin, et al., Utilización de Barreras de Argón en el Distribuidor para mejorar la limpieza de Inclusión en Planchones de Colada Continua, CONAC, Monterrey, México (2010).Google Scholar
  9. 9.
    J. Jiang, J. S. Li, H. J. Wu, et al, “Water modeling of molten steel flow in a multi-strand tundish with gas blowing,” Int. J. Miner., Metall. Mater., 17, No. 2, 143–148 (2010).CrossRefGoogle Scholar
  10. 10.
    J. de J. Barreto, G. Barrera, and C. Orozco, “Modelación física anisotérmica del flujo de acero usando inhibidores de turbulencia y cortinas de argon en el distribuidor de colada continua,” Memoria del XX Simposio Nacional de Siderurgia, Morelia, México (1999).Google Scholar
  11. 11.
    L. Zhang and B. G. Thomas, “State of the art in evaluation and control of steel cleanliness,” ISIJ Int., 43, No. 3, 271–291 (2002).CrossRefGoogle Scholar
  12. 12.
    A. Vargas-Zamora, J. Palafox-Ramos, R. D. Morales, et al., “Inertial and buoyancy driven water flows under gas bubbling and thermal stratification conditions in a tundish model,” Metall. Mater. Trans. B, 35B, No. 2, 247–254 (2004).CrossRefGoogle Scholar
  13. 13.
    L. Zhong, L. Li, B. Wang, et al., “Fluid flow behavior in a slab continuous casting tundish with different configurations of gas bubbling curtain,” Ironmak. Steelmak., 35, No. 6, 436–440 (2008).CrossRefGoogle Scholar
  14. 14.
    G. Solorio-Díaz, A. Ramos-Banderas, J. de J. Barreto, and R. Morales, “Modeling study of turbulent flow effect on inclusion removal in a tundish with swirling ladle shroud,” Steel Res. Int., 80, No. 3, 223–234 (2009).Google Scholar
  15. 15.
    T. J. Chung, Computational Fluid Dynamics. Cambridge Univ. Press, New York (2010).CrossRefGoogle Scholar
  16. 16.
    Y. Sahai and T. Emi, “Melt flow characterization in continuos casting tundishes,” ISIJ Int., 36, No. 6, 667–672 (1996).CrossRefGoogle Scholar
  17. 17.
    M. Collur, D. Love, and B. Patil, Proceedings of the 80th Steelmaking Conference, I&S Society AIME, Warrendale (1997).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • C. E. Aguilar-Rodriguez
    • 1
  • J. A. Ramos-Banderas
    • 1
  • E. Torres-Alonso
    • 1
  • G. Solorio-Diaz
    • 2
  • C. A. Hernández-Bocanegra
    • 3
  1. 1.Morelia Technological Institute (ITM)MoreliaMéxico
  2. 2.Michoácan University of Saint Nicholas of Hidalgo (UMSNH)MoreliaMéxico
  3. 3.Cátedras CONACyT assigned to Morelia Technological Institute (ITM)MoreliaMéxico

Personalised recommendations