Advertisement

Meccanica

pp 1–19 | Cite as

Superposition of non-ordinary state-based peridynamics and finite element method for material failure simulations

  • Wei Sun
  • Jacob Fish
  • Ga ZhangEmail author
Computational Models for 'Complex' Materials and Structures, beyond the Finite Elements
  • 58 Downloads

Abstract

Superposition of non-ordinary state-based peridynamics and finite element method for material failure simulations, including crack propagation and strain localization is developed. By this approach, a peridynamic model capable of effectively treating strong and weak discontinuities is superimposed in the critical regions over an underlying finite element mesh placed over the entire problem domain. A rigorous variational framework of coupling local finite element and nonlocal peridynamics approximations that is free of blending parameters is developed. Several numerical examples involving mixed-model fracture, three-dimensional adaptive crack propagation and strain localization induced ductile failure demonstrate the rational and efficiency of the proposed superposition-based coupling approach.

Keywords

Superposition-based coupling NOSBPD FEM Material failure 

Notes

Acknowledgements

The study is funded by National Key R&D Program of China (2018YFC1508503).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5):601–620zbMATHCrossRefGoogle Scholar
  2. 2.
    Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104ADSCrossRefGoogle Scholar
  3. 3.
    Barrenblatt GI (1962) The mathematical theory of equilibrium of cracks in brittle fracture. Adv Appl Mech 7:55–129MathSciNetCrossRefGoogle Scholar
  4. 4.
    Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Oliver J, Cervera M, Manzoli O (1999) Strong discontinuities and continuum plasticity models: the strong discontinuity approach. Int J Plast 15(3):319–351zbMATHCrossRefGoogle Scholar
  6. 6.
    Borja RI (2000) A finite element model for strain localization analysis of strongly discontinuous fields based on standard Galerkin approximation. Comput Methods Appl Mech Eng 190:1529–1549ADSzbMATHCrossRefGoogle Scholar
  7. 7.
    Belytschko T, Fish J, Engelmann BE (1988) A finite element with embedded localization zones. Comput Methods Appl Mech Eng 70(1):59–89ADSzbMATHCrossRefGoogle Scholar
  8. 8.
    De Borst R, Mühlhaus H-B (1992) Gradient-dependent plasticity: formulation and algorithmic aspects. Int J Numer Methods Eng 35(3):521–539zbMATHCrossRefGoogle Scholar
  9. 9.
    De Borst R (1991) Simulation of strain localization: a reappraisal of the Cosserat continuum. Eng Comput 8(4):317–332CrossRefGoogle Scholar
  10. 10.
    Lazari M, Sanavia L, Schrefler BA (2015) Local and non-local elasto-viscoplasticity in strain localization analysis of multiphase geomaterials: local/non-local elasto-viscoplastic modeling of multiphase materials. Int J Numer Anal Methods Geomech 39(14):1570–1592CrossRefGoogle Scholar
  11. 11.
    Conte E, Silvestri F, Troncone A (2010) Stability analysis of slopes in soils with strain-softening behaviour. Comput Geotech 37(5):710–722CrossRefGoogle Scholar
  12. 12.
    Mánica MA, Gens A, Vaunat J, Ruiz DF (2018) Nonlocal plasticity modelling of strain localisation in stiff clays. Comput Geotech 103:138–150CrossRefGoogle Scholar
  13. 13.
    Huang M, Qu X, Lü X (2018) Regularized finite element modeling of progressive failure in soils within nonlocal softening plasticity. Comput Mech 62(3):347–358MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Hakim Vincent, Karma Alain (2009) Laws of crack motion and phase-field models of fracture.”. J Mech Phys Solids 57(2):342–368ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Kuhn Charlotte, Müller Ralf (2010) A continuum phase field model for fracture. Eng Fract Mech 77(18):3625–3634CrossRefGoogle Scholar
  16. 16.
    Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48:175–209ADSMathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83(17–18):1526–1535CrossRefGoogle Scholar
  18. 18.
    Madenci E, Oterkus E (2014) Peridynamics theory and its applications. Springer, New YorkzbMATHCrossRefGoogle Scholar
  19. 19.
    Khan M, Hossain I (2014) Shear band regularization with peridynamics. Thesis (M.S.), The University of Texas at San AntonioGoogle Scholar
  20. 20.
    Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamics states and constitutive modeling. J Elast 88(2):151–184MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Breitenfeld MS, Geubelle PH, Weckner O, Silling SA (2014) Non-ordinary state-based peridynamic analysis of stationary crack problems. Comput Methods Appl Mech Eng 272:233–250ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Yaghoobi A, Chorzepa MG (2015) Meshless modeling framework for fiber reinforced concrete structures. Comput Struct 161:43–54CrossRefGoogle Scholar
  23. 23.
    Lai X, Ren B, Fan H, Li S, Wu CT, Regueiro RA, Liu L (2015) Peridynamics simulations of geomaterial fragmentation by impulse loads: peridynamics simulations of geomaterial fragmentation by impulse loads. Int J Numer Anal Methods Geomech 39(12):1304–1330CrossRefGoogle Scholar
  24. 24.
    Lai X, Liu L, Li S, Zeleke M, Liu Q, Wang Z (2018) A non-ordinary state-based peridynamics modeling of fractures in quasi-brittle materials. Int J Impact Eng 111:130–146CrossRefGoogle Scholar
  25. 25.
    Amani J, Oterkus E, Areias P, Zi G, Nguyen-Thoi T, Rabczuk T (2016) A non-ordinary state-based peridynamics formulation for thermoplastic fracture”. Int J Impact Eng 87:83–94CrossRefGoogle Scholar
  26. 26.
    Lu J, Zhang Y, Muhammad H, Chen Z, Xiao Y, Ye B (2019) 3D analysis of anchor bolt pullout in concrete materials using the non-ordinary state-based peridynamics”. Eng Fract Mech 207:68–85CrossRefGoogle Scholar
  27. 27.
    Song X, Menon S (2019) Modeling of chemo-hydromechanical behavior of unsaturated porous media: a nonlocal approach based on integral equations. Acta Geotech 14(3):727–747CrossRefGoogle Scholar
  28. 28.
    Song Xiaoyu, Khalili Nasser (2019) A peridynamics model for strain localization analysis of geomaterials. Int J Numer Anal Methods Geomech 43(1):77–96CrossRefGoogle Scholar
  29. 29.
    Liu W, Yang G, Cai Y (2018) Modeling of failure mode switching and shear band propagation using the correspondence framework of peridynamics. Comput Struct 209:150–162CrossRefGoogle Scholar
  30. 30.
    Seleson P, Beneddine S, Prudhomme S (2013) A force-based coupling scheme for peridynamics and classical elasticity. Comput Mater Sci 66:34–49CrossRefGoogle Scholar
  31. 31.
    Lubineau G, Azdoud Y, Han F, Rey C, Askari A (2012) A morphing strategy to couple non-local to local continuum mechanics. J Mech Phys Solids 60(6):1088–1102ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Kilic B, Madenci E (2010) Coupling of peridynamic theory and the finite element method. J Mech Mater Struct 5(5):707–733CrossRefGoogle Scholar
  33. 33.
    Liu W, Hong J-W (2012) A coupling approach of discretized peridynamics with finite element method. Comput Methods Appl Mech Eng 245–246:163–175ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Yu Y, Bargos FF, You H, Parks ML, Bittencourt ML, Karniadakis GE (2018) A partitioned coupling framework for peridynamics and classical theory: analysis and simulations. Comput Methods Appl Mech Eng 340:905–931ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Wang X, Kulkarni SS, Tabarraei A (2019) Concurrent coupling of peridynamics and classical elasticity for elastodynamic problems”. Comput Methods Appl Mech Eng 344:251–275ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Han F, Lubineau G, Azdoud Y, Askari A (2016) A morphing approach to couple state-based peridynamics with classical continuum mechanics. Comput Methods Appl Mech Eng 301:336–358ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Galvanetto U, Mudric T, Shojaei A, Zaccariotto M (2016) An effective way to couple FEM meshes and peridynamics grids for the solution of static equilibrium problems. Mech Res Commun 76:41–47CrossRefGoogle Scholar
  38. 38.
    Fang G, Liu S, Fu M, Wang B, Wu Z, Liang J (2019) A method to couple state-based Peridynamics and finite element method for crack propagation problem. Mech Res Commun 95:89–95CrossRefGoogle Scholar
  39. 39.
    Ni T, Zaccariotto M, Zhu Q-Z, Galvanetto U (2019) Coupling of FEM and ordinary state-based peridynamics for brittle failure analysis in 3D. Mech Adv Mater Struct.  https://doi.org/10.1080/15376494.2019.1602237 CrossRefGoogle Scholar
  40. 40.
    Bie YH, Cui XY, Li ZC (2018) A coupling approach of state-based peridynamics with node-based smoothed finite element method. Comput Methods Appl Mech Eng 331:675–700ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Sun W, Fish J, Dhia HB (2018) A variant of the s-version of the finite element method for concurrent multiscale coupling. Int J Multiscale Comput Eng 16(2):21–40CrossRefGoogle Scholar
  42. 42.
    Sun W, Fish J (2019) Superposition-based coupling of peridynamics and finite element method. Comput Mech 64(1):231–248MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Fish J (1992) The s-version of the finite element method. Comput Struct 43(3):539–547zbMATHCrossRefGoogle Scholar
  44. 44.
    Fish J (1992) Hierarchical modelling of discontinuous fields. Int J Numer Methods Eng 8(7):443–453zbMATHGoogle Scholar
  45. 45.
    Fish J, Markolefas S (1993) Adaptive s-method for linear elastostatics. Comput Methods Appl Mech Eng 104(3):363–396ADSzbMATHCrossRefGoogle Scholar
  46. 46.
    Fan R, Fish J (2008) The rs-method for material failure simulations. Int J Numer Methods Eng 73(11):1607–1623MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Yang Jiao, Fish Jacob (2015) Adaptive delamination analysis. Int J Numer Methods Eng 104(11):1008–1037MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Yang Jiao, Fish Jacob (2015) On the equivalence between the s-method, the XFEM and the ply-by-ply discretization for delamination analyses of laminated composites. Int J Fract 191(1–2):107–129Google Scholar
  49. 49.
    Dhia HB (1998) Multiscale mechanical problems: the Arlequin method. Comptes Rendus de l’Académie des Sciences Série IIb 326:899–904ADSzbMATHGoogle Scholar
  50. 50.
    Dhia HB, Rateau G (2005) The Arlequin method as a flexible engineering design tool. Int J Numer Methods Eng 62(11):1442–1462zbMATHCrossRefGoogle Scholar
  51. 51.
    Dhia HB (2008) Further insights by theoretical investigations of the multiscale Arlequin method. Int J Multiscale Comput Eng 6(3):215–232CrossRefGoogle Scholar
  52. 52.
    Strouboulis T, Babuška I, Copps K (2000) The design and analysis of the generalized finite element method. Comput Methods Appl Mech Eng 181(1–3):43–69ADSMathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Melenk Jens M, Babuška Ivo (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139(1-4):289–314ADSMathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Silling SA (2017) Stability of peridynamic correspondence material models and their particle discretizations. Comput Methods Appl Mech Eng 322:42–57ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    Foster JT, Silling SA, Chen W (2011) An energy based failure criterion for use with peridynamic states. Int J Multiscale Comput Eng 9(6):675–687CrossRefGoogle Scholar
  56. 56.
    Zhou XP, Wang YT, Xu XM (2016) Numerical simulation of initiation, propagation and coalescence of cracks using the non-ordinary state-based peridynamics. Int J Fract 201:213–234CrossRefGoogle Scholar
  57. 57.
    Dipasquale D, Sarego G, Zaccariotto M, Galvanetto U (2017) A discussion on failure criteria for ordinary state-based peridynamics. Eng Fract Mech 186:378–398CrossRefGoogle Scholar
  58. 58.
    Azdoud Y, Han F, Lubineau G (2014) The morphing method as a flexible tool for adaptive local/non-local simulation of static fracture. Comput Mech 54(3):711–722MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Van der Vorst HA (1992) Bi-CGSTAB: a fast and smoothly converging variant of BiCG for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput 13:631–644zbMATHCrossRefGoogle Scholar
  60. 60.
    Potts DM, Kovačević N, Vaughan PR (1997) Delayed collapse of cut slopes in stiff clay. Géotechnique 47(5):953–982CrossRefGoogle Scholar
  61. 61.
    Zhang G, Luo F (2017) Simplified stability analysis of strain-softening slopes under drawdown conditions. Environ Earth Sci 76(4):151CrossRefGoogle Scholar
  62. 62.
    Wang P, Sang Y, Shao L, Guo X (2019) Measurement of the deformation of sand in a plane strain compression experiment using incremental digital image correlation. Acta Geotech 14(2):547–557CrossRefGoogle Scholar
  63. 63.
    Wang YH, Leung SC (2008) Characterization of cemented sand by experimental and numerical investigations. J Geotech Geoenviron Eng 134(7):992–1004CrossRefGoogle Scholar
  64. 64.
    Verhoosel CV, Remmers JJC, Gutiérrez MA (2009) A dissipation-based arc-length method for robust simulation of brittle and ductile failure. Int J Numer Methods Eng 77(9):1290–1321zbMATHCrossRefGoogle Scholar
  65. 65.
    Nooru-Mohamed MB, Schlangen E, van Mier JG (1993) Experimental and numerical study on the behavior of concrete subjected to biaxial tension and shear. Adv Cem Based Mater 1(1):22–37CrossRefGoogle Scholar
  66. 66.
    Wang Y, Zhou X, Wang Y, Shou Y (2018) A 3-D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids. Int J Solids Struct 134:89–115CrossRefGoogle Scholar
  67. 67.
    De Borst R (1997) Some recent developments in computational modelling of concrete fracture. Int J Fract 86:5–36CrossRefGoogle Scholar
  68. 68.
    Di Prisco M, Ferrara L, Meftah F, Pamin J, De Borst R, Mazars J, Reynouard J (2000) Mixed mode fracture in plain and reinforced concrete: some results on benchmark tests. Int J Fract 103:127–148CrossRefGoogle Scholar
  69. 69.
    Mesgarnejad A, Bourdin B, Khonsari MM (2015) Validation simulations for the variational approach to fracture. Comput Methods Appl Mech Eng 290:420–437ADSMathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Bobiski J, Tejchman J (2016) Comparison of continuous and discontinuous constitutive models to simulate concrete behaviour under mixed-mode failure conditions. Int J Numer Anal Methods Geomech 40(3):406–435CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Hydroscience and EngineeringTsinghua UniversityBeijingChina
  2. 2.Civil Engineering and Engineering MechanicsColumbia UniversityNew YorkUSA

Personalised recommendations